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PREFACE

HEN I was asked to write this tract I was given the privilege

of making any possible use of the tract by my old friend
J. E. Wright, which was published under the same title about
twenty years ago. In these twenty years, however, so much has
happened to change our view of the subject that I am sure Wright
would have written an entirely new tract if he had lived—and that
is what I have done.

It is not merely that many new discoveries have been made, but
since the advent of Relativity the subject has been so muck studied
and expounded with a view to its applications that it .now seems-
possible to say that certain methods are definitely accepted as cf
primary interest and certain others left to one side as of less con-
sequence to science as a whole. I have tried to set forth the parts
of the subject which are important for the applications as fully as
the space available would permit and therefore have been forced to
leave out several of the questions which Wright included. I have
also tried to make the tract elementary in the sense that fundamental
definitions are carefully formulated. This has necessarily made the
preliminary part of the book long as compared with the rest, and
has crowded out material on the applications of the subject which
I wrote with more pleasure than some of the pages actually included.
However, there are so many books on Relativity, and doubtless will
be so many others applying differential invariant theory to Electro-
magnetic theory, Dynamics, and Quantum theory that one may
perhaps be forgiven for not trying to include the applications in
these few pages.

Differential geometry has also been crowded out. It seemed
important to illustrate the general ideas by the simple case from
which they are generalized, namely, elementary geometry. This left
no room for higher differential geometry, not even for a discussion
of infinitesimal parallelism. But the geometrical point of view is
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acceasible in several recent books* with which this one is not intended
to compete. Its purpose is rather to assist the students of differential
geometry and mathematical physics by setting forth the underlying
differential invariant theory. So it is not entirely by accident that
- the book ends with a formula which can be of interest only to a
reader who intends to go forward to the problems in which it is used.

My thanks are due to several of my colleagues and students at
Princeton who have made helpful suggestions either when reading
the manuscript or during my lectures on the subject. I am par-
ticularly indebted to Dr J. M. Thomas and Mr M. S. Knebelman
who: have read the whole of the manuscript, and the proof sheets
as well.

* On differential geometry we may mention D. J. Struik, Mehrdimensionale
Differeniialgeometrie, Berlin, 1922; J. A. Schouten, Der: Ricci- Kalkiil, Berlin, 1924 ;
E. Cartan, La Géométrie des espaces de Riemann, Paris, 1925; T. Levi-Civita, Lezions
di Calcolo Differenziale assoluto, Rome, 1925 (English translation, London, 1927);
L. P. Eisenhart, Riemannian Geometry, Princeton, 1926: on differential invariants
in general, R. Weitzenbdck, Invariantentheorie, Groningen, 1923. .

OSWALD VEBLEN

PRINCETON, N. J.
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CHAPTER I

FORMAL PRELIMINARIES

1.. The summation convention. ,

The theory of differential invariants, like the theory of algebraic
invariants, is’ essentially formal. It has many geometrical and
physical applications which have played a large réle in the develop-
ment of the theory. Yet, after all, it is the actual formulas which
are the essential subject matter of the theory. This, at least, is the
point of view which we are adopting at present, and so we shall
devote a chapter to questions of notation before we try to say what
a differential invariant is.

Recent advances in the theory of differential invariants and the ;
wide use of this theory in physical investigations have brought about
a rather general acceptance of a particular type of notation, the
essential feature of which is the systematic use of subscripts and
superscripts and the resulting abandonment of all sorts of notations
for special operations. The only operations for which we shall
employ special signs are addition, subtraction, multiplication,
division, differentiation and integration. These, with the usual run
of symbols for functions and sets of functions, are found to suffice
for all our purposes.

We shall follow the usage of Einstein of indicating a summation
by means of a repeated index: i.e. any term in which the same index
(subscript or superscript) appears twice shall stand for the sum of

"all terms obtainable by giving the index all possible values. Thus,
for example, if ¢ can take on the values* from 1 to n,
(1-1) a Tt + QT2 + ... + G, 2" = a,at.
Before the advent of Relativity, this expression would have been
written .
Eaix‘.
. i=1
The innovation consists simply in leaving off the summation sign
whenever an index is repeated. Its only inconvenience arises when

* The superscript k in 2* does not mean that z is raised to the power k but ie

merely an index. to distinguish among » variables, 21, 23, ..., 2"*.

v I



-the expression. Thus

2 FORMAL PRELIMINARIES [cHAP. 1

we wish to speak of the general term in an expression like (1-1)
without carrying out the summation. Butin the theory of differential

* invariants this situation arises so rarely that the inconvenience is

negligible in comparison with the advantages of the notation.

The repeated index is sometimes called a dummy or an umbral
index because, like a variable of integration, the symbol for it in
any expression can be changed without affecting the meaning of

a‘z‘ = akzk .
We shall have to deal with sets of quantities
(12) | TG

which are in general functions of n variables 2%, 22, ..., z». If there
are p superscripts and g subscripts each taking values from 1 to =,
the expression (1-2) indicates a set of n?+¢ quantities. By setting
a subscript and a superscript equal to each other and summing
according to the summation convention we can get a new set of
quantities, for example,
b...c ab...c
P; %x="Ta -
This operation is called contraction (German, Verjiingung).
When we have two sets of quantities and multiply every quantity

_ in one set by every quantity in the other set, for example,

ab...c Hde...f ab...cde...f
Pif...k le...p = Rﬁklmp ’

 we get a new and more numerous set of quantities of the same type.

This operation is called multiplication. When we have two sets of
quantities indicated by the same numbers of subscripts and of
superscripts & new set of quantities of the same type is obtained by

addition, ab... ab... ab...
Pii...kc oS Qy...lf= Sa...kc-

As an illustration of these operations we may write the formula for
a multiple power series

A+ Ao+ % R 31, ApB P2+ ...
A set of quantities such as (1-2) is said to be symmetric in any set.

of indices provided that the value of the symbol (1-2) is unaltered
by any permutation of the indices in question. For example, if

I‘;k—'_‘— P:,)



§2] KRONECKER DELTAS 3

the quantities I' are symmetric in the subscripts. A set of quantities
is said to be alternating (or antisymmetric or skew-symmetric) in a
given set of indices providing it is unchanged by any even permu-
tation* of the set of indices in question and merely changed in sign
by any odd permutation of the same indices. For example, if

¢ !
Tie=—Ty>
the quantities I" are alternating in the subseripts.

2. The Kronecker deltas.

The theory of determinants and allied expressions is essentially a
theory of alternating sets of quantities, and can be made to depend
on certain fundamental alternating sets of quantities which have
only the values 0 and + 1 and — 1. These sets of quantities are
known as generalized Kronecker deltas because of their analogy with
the Kronecker delta which is already well known. The latter is
defined as follows:

8j=1, if i=4; and 8;=0, if 5.
Hence using the summation convention
(1) Si=n,
and 8; a;= a;, and S;a=a.
If 21, 22, ..., 2" are independent variables,

@22) 8,

The generalized Kronecker delta has & superseripts and & sub-
scripts, each running from 1 to %, and is alternating both in super-
scripts and subseripts. It is denoted by

Tyige-o ik
L

If the superscripts are distinct from each other and the subscripts
are the same set of numbers as the superscripts, the value of the
symbol is + 1 or — 1 according as an even or an odd permutsation
is required to arrange the superscripts in the same order as the
subscripts; in all other cases its value is 0.

* It is proved in books on algebra that any permutation of n objects can be
brought about by a finite number of transpositions of pairs of these objocts, and
that the number of transpositions required to bring about a given permutation is
always even or always odd. If this number is even the permutation is said to be
even. In the opposite case the permutation is said to be odd.

I-2
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For example, if n = 3 and k = 2
0=38y =85 =87 =513, ete. 1=580=513_52 etc.
—1=2583; =83 = 813, ete.

Using these symbols, the general formula for any two-rowed deter-
minant formed from the matrix

T Al :z:")
Vy? .oyt
is Ty — Dyt = § 7 24P,

In like manner we can represent differential expressions which are
analogous to determinants. For example, if 4,, 4,, ..., 4, are
functions of 2!, 2, ..., z*,

04; 04;  a0d,

w0
The general three-rowed determinant formed from the matrix

4, 4, A4, ... A,

(B1 B, B ... B,,)

C, ¢ O ...0C,

=3

| 4, 4, A,
is 85% 4,B,C,=| B, B, B,
C; 0 G

If 4; and B, are analytic functions of 2%, 23, ..., *, we can form
determinant-like expressions as follows:

5 48 (-2 - )+ (52,
If a set of quantities 7' is symmetric in two or more subscripts

(2:3) S3anir Tigii =0,
and if it is symmétric in two or more superscripts an analogous

relation holds. If a set of quantities 4 is alternating in its subscripts,
which are vk in number,

(24) St Ay =R Ay s

3. In studying determinants it is often advantageous to use two
other permutation symbols defined as follows:

ixta-vin Taizeein 12.n
(3-1) € =0812..n =8i,i,...i.=€ili,...i- .
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Thus € is + 1 or — 1 according as the subscripts or superscripts are
obtained from the natural aumbers 12 ... » by an even or an odd
permuta,tmn otherwise it is zero. The number of indices on an
epsilon is always n. By the definition of a determinant,

1 1 1
al Qg ... @
2 2 2
. o i) _ | @ Ay .. @ l
(3-2) a=la;|=]"71 72 n{
n n n
al a2 . an
_ _tigein ,1 2 n __ in
€ ai,aia"'aiu—euh z..a'la2 <@y -

For example, a generalized Kronecker delta is a determinant of the
simple Kronecker deltas,

(3:3) 8 s = €ab.oB)s S5t -oe i
(Here we are applying the summation convention to indices and
subscripts of indices.) From either of the expansions in (3-2) it is

evident that interchanging two rows of the determinant changes its
gsign. Hence for any permutation of rows

(3.41) aeab...‘c u kaaab GZ'
Likewise, for any permutation of columns i
(3-42) ae,, =€y kai a’l;...a’of.

It is an obvious corollary of these two formulas that a = 0 if any
two rows or any two columns of the determinant are identical.

The formula for the product of two determinants may be derived
as follows:

(3-5) ab=ae,, ,b3b% .0
alal ...a™b3b5 ... ¢

(al b9 (a} B%)... (@l b3)

=€iy.m
= ¢,
where

(3-6) cf=albf=a} bl +aib]+ . +albl.

The formula for the expaunsion of a determinant in terms of the
elements of the first column and their cofactors may be obtained as
follows:

(8+7) a=a} € al..wi"=ald},

it i 2
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where

(3-8) A}=c;, . ;0303507
More generally,

(3-9) a= a;e%.__ﬁ a}..a718; B s a®,

Hence if we define the cofactor of a:, as
(3-10) AP =cy, 00 ..ab T 8Palmy ey,

we have
(3:11) al AP =ad?.

This formula gives the expansion of the determinant in terms of
the elements of the pth column if p = g. In case p # ¢ it gives the
theorem that the sum of the products of the elements of one column
into the cofactors of another is zero. The corresponding theorems
about the expansion in terms of the elements of a row are

(3-12) ol 47 = adl.

Although we have spoken about rows and columns it is clear that
the visual representation of a determinant may be left to one gide
when we are using the present notation. The notation takes the
place of these other devices. It is not merely an abbreviation; it is
a measure for economy of thought. For by arranging that unessential
or routine questions are taken care of automatically it enables us to
concentrate attention on the new ideas which we have to meet.

4. Linear equations.
To solve a set of linear equations
- (4:1) alz' +ala’+ ... +alae" =0},

alz'+alz?+ .. +ala"=b"

a’l‘zl +a"2‘:1:2+ et anz=0"
or,.as we prefer to write them,
(42) - aj z! =bt,
we multiply (4-2) by A¥ and sum with respeet to 4,
aid¥al = bk,
Using (3:11) this reduces to
ab} ! = bi A%,
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or, in case a # 0, _

(4-3) ot = blf?
which is Cramer’s rule for the solution of linear equations.

5. Functional determinants.
In our work the determinant which appears most frequently is
the Jacobian of n functions of # variables
yi (2, 23 ..., 2n),

which is defined by the equation
; 0 (yy% .- 9" _ |0y
(51) o(a\,a?,...,a") |0z
— chintn YO Oy

0z* 0z " Oxn”

For n functions 2* (4, 92, ..., y") a fundamental theorem on partial
differentiation states that
' 07t _ 0z* oyt

(&:2) %~ o
Hence by the theorem on multlphcatlon of determinants (3 6) the
functional determinants satisfy the equation

0z oz | |oy
=) 5|~ |3yl |2z’

In case the functions 2* are such that
2Ly, oY) =7,

(56-2) becomes

. oz* 0
(54) o= 3
and (5-3) reduces to
loy|_ 1
(6-5) 13| =

For a fixed value of j, (5-4) may be regarded as a set of » linear
equations for the determination of n unknowns, dy*/02?, the co-
efficients being the 2 quantities 02‘/0y*. Solving these equations
according to § 4, we find

orf . |oz

cofactor of =— In | ~—

: oy* _ oy |0y
(2-6) E i =

%
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Other formulas about functional determinants are:

; ab..c|0y| O (Y- Y°)
o] Big .k ox| O(z'7...a%)°
and
QY ab...c _ 0 (m“z" - Zc)
©%) 85k = (e .. )’

8. By partial differentiation the formulas (5-4) give rise to the
following formulas which are often useful:

o2yt Oxe 0% Oyt oyF

L o 0y T oy
_ ohyi o dwd | 0 Oy .
€2) S o 0y o T e O

o3 B0 By o op, e ooy

Giortoa dyf | 0at0x® Oy Oy 0x° ' Oyl dy*oy' ox* Ox oOa’
ouwe  o%i oyt 0% oy' %

iy Oy Oa0x° 0o | Oy’ Oy* 0" 0x°0x°

and so on.

7. Derivative of a determinant.
In case the elemeuts of a determinant are functions of (2%, 2%, ..., ")
we have by differentiatiog (3-2)

da dat ., Leak
(7-1) é—gzeizfz---‘in (_8_1;7 012 ...a;+a;‘ axj...a?n-{-...) .
??_‘;l Al a_; 2 4
ax.'f 154 a j " o
b
Tt

Tn case the determinant in question is the Jacobian of a irans-
formation of coordinates, (5-1), (7-1) reduces to

9 |oy
) _ 0 |0x|  o% Ox°
(7-2) Toy]  dion o
oz

8. Numerical relations.
The permutation symbois satisfy a number of numerical relations
which are easily verified by counting the number of terrs which
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appear in the various sums. Thus we have

87 =(n— 1)5;, and 8% =n(n—1),

Ak (n o 7')' fia...ir

i 192 Eriril.. LN

(&1) 8 i drirszds — (= F)1 “didair’
e n!

A ide. dh
(8 2) Six'in...ik o (n o k) 1’

9 Dy =,

g e TR k41000 T o o QK
(8 4) © ej,...]'xikﬂ...iu o (n k) ) 511---1*’
(8'5) Ei]...ikik+[-..’l:u S#H"'J." . (’l‘b o k) 1 €i1...ikik+l...ju’

Tk+1...Tn N

L e kTR e QTRFLFr o Teee Tk Th+1.-0 2

(8 6) 8]‘1...jkjk+1..-jrSﬁk:l.--pr o (7' k) ! Bix---ikpk+t---pv’

J U ee e Uk Th4100eBr 1...07 (7'/ o k) ! eeed
(8-8) ottotm= VP € jmp.1>
if p is the number of indices % ... L.

9. Minors, cofactors, and the Laplace expansion.

The k-rowed minors of a determinant a are defined by the formula
% te.etk _ Qiiisedk P1 P2 Dk
(9-1) Bitrods = O mapnan O3 Ots By -
— SD1Ds..DE 01 2 ik
. 81’1_1'2---1‘): apx api apk'
Thus the one-rowed minors are the elements a; themselves, the

two-rowed minors are the determinants,

i1 iz
A ai:
0 12
ah aJ':
and so on. The determinant is given by
|
£ —_ _ pulz..in
(9-2) @= a5
and we also have
(9'3) asi""’:‘ = 1 ail...ikikﬂ...i.

Jr g% o (n — k) ! F1eJk k1.0 in”

The cofactor of the k-rowed minor (9-1) is the determinant

(9-4) Aidede L gijrdngien gin

frig...ik (n . k)l iifeeein  JEk41 """ Uin

= __1____ 83'1---1- aik+1...‘i,|
= ((n _ k)!)z Teoedn * Jk41eeedn? .

which is equivalent to (3-10) if & = 1.



