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Preface

The goal of this book is to introduce the reader to different topics of the theory
of elliptic partial differential equations avoiding technicalities and refinements.
The material of the first part is written in such a way it could be taught as
an introductory course. Most of the chapters — except the four first ones — are
independent and some material can be dropped in a short course. The four first
chapters are fundamental, the next ones are devoted to teach or present a larger
spectrum of the techniques of this topics showing some qualitative properties of
the solutions to these problems. Everywhere just a minimum on Sobolev spaces has
been introduced, work or integration on the boundary has been carefully avoided
in order not to crowd the mind of the reader with technicalities but to attract his
attention to the beauty and variety of these issues. Also very often the ideas in
mathematics are very simple and the discovery of them is a powerful engine to
learn quickly and get further involved with a theory. We have kept this in mind
all along Part 1.

Part II contains more advanced material like nonlinear problems, systems,
regularity... Again each chapter is relatively independent of the others and can
be read or taught separately.

We would also like to point that numerous results presented here are original
and have not been published elsewhere.

This book grew out of lectures given at the summer school of Druskininkai
(Lithuania), in Tokyo (Waseda University) and in Rome (La Sapienza). It is my
pleasure to acknowledge the réle of these different places and to thank K. Pileckas,
Y. Yamada, D. Giachetti for inviting me to deliver these courses.

I would also like to thank Senoussi Guesmia, Sorin Mardare and Karen Yer-
essian for their careful reading of the manuscript and Mrs. Gerda Schacher for
her constant help in preparing and typing this book. I am also very grateful to
H. Amann and T. Hempfling for their support.

Finally T would like to thank the Swiss National Science Foundation who
supported this project under the contracts #20-113287/1, 20-117614/1.

Ziirich, December 2008
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Basic Techniques
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Chapter 1

Hilbert Space Techniques

The goal of this chapter is to collect the main features of the Hilbert spaces and to
introduce the Lax—Milgram theorem which is a key tool for solving elliptic partial
differential equations.

1.1 The projection on a closed convex set

Definition 1.1. A Hilbert space H over R is a vector space equipped with a scalar
product (-, -) which is complete for the associated norm

lul = (u,u)?, (1.1)
i.e., such that every Cauchy sequence admits a limit in H.

Examples.

1. R™ equipped with the Euclidean scalar product

n
(,y)=z-y= szyz V= (z1,...,Zn), y= (Y1,...,Yn) € R™
i=1
(We will prefer the notation with a dot for this scalar product.)

2. L*(A) = {v: A — R,v measurable | [, v?(z)dz < +00} with A a measur-
able subset of R™. Recall that L?(A) is in fact a set of “class” of functions.
L2(A) is a Hilbert space when equipped with the scalar product

(u,v):/Au(x)v(z)dz. (1.2)

Remark 1.1. Let us recall the important “Cauchy—Schwarz inequality” which as-
serts that
|(u,v)| < |u||v] Vu,veH. (1.3)
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One of the important results is the following theorem.

Theorem 1.1 (Projection on a convex set). Let K # () be a closed conver subset
of a Hilbert space H. For every h € H there exists a unique u such that

u € K, (1.4)
|h—u| <|h—v|, YveEK, ’

(i.e., u realizes the minimum of the distance between h and K). Moreover u is the
unique point satisfying (see Figure 1.1)

u€ K, (1.5)
(u—h,v—u)>0, YveK. ’

u is called the orthogonal projection of h on K and will be denoted by Py (h).

h

u = PK(h)

Figure 1.1: Projection on a convex set

Proof. Consider a sequence u, € K such that when n — 400
|h — up| — vIél}f(|h —v|:=d.

The infimum above clearly exists and thus such a minimizing sequence also. Note
now the identities

lun—um|2:|un—h+h—um!2:lh—un|2+|h~um]2+2(un—h,h—um)
l2h—un~um|2:|h—un+h—um|2:|h—un|2—|—|h—um|2+2(h—un,h—um).

Adding up we get the so-called parallelogram identity
[Un — tum|? + |2k — up — um |? = 2|k — un|? + 2|h — um |2 (1.6)
Recall now that a convex set is a subset of H such that

au+(l-—a)ve K Vu,ve K, Vacll]. (1.7)
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From (1.6) we derive

Uy, + Uy, |2
|un—um|2=2|h—un[2+2|h—um|2—4h——"—2—

< 2|h_un|2+2|h_um|2 — 4d? (18)

since Y»ttm € K (take a = 3 in (1.7)). Since the right-hand side of (1.8) goes to

0 when n, m — +00, u, is a Cauchy sequence. It converges toward a point u € K
— since K is closed — such that

— ] = — . 1.9
b~ ul = Inf |h ol (19)
This shows the existence of u satisfying (1.4). To prove the uniqueness of such a

u one goes back to (1.8) which is valid for any u,, un, in K. Taking u, v’ two
solutions of (1.4), (1.8) becomes

lu — )% < 2/h —u|? +2|h — /|2 — 4d% = 0,
i.e., u = v/. This completes the proof of the existence and uniqueness of a solution

o (1.4). We show now the equivalence of (1.4) and (1.5). Suppose first that u is
solution to (1.5). Then we have

[h—v]?=|h—utu—v?=|h—u?+|u—v]*+2(h—u,u—v) > |h—u|> VveK.

Conversely suppose that (1.4) holds. Then for any « € (0,1) — see (1.7) — we have
forve K

h—u? <|h—[av+ (1 —)u)|? = |h—u—alv-u)?
= |h —u* + 2a(u — h,v — u) + o®|v — u|%.
This implies clearly
20(u — h,v —u) + o?lv —ul? > 0. (1.10)

Dividing by a and letting @ — 0 we derive that (1.5) holds. This completes the
proof of the theorem. O

Remark 1.2. If h € K, Px(h) = h. (1.5) is an example of variational inequality.

In the case where K is a closed subspace of H (this is a special convex set)
Theorem 1.1 takes a special form.

Corollary 1.2. Let V' be a closed subspace of H. Then for every h € H there exists

a unique u such that
{“ =5 (1.11)
|h—u|<|h—v|, YveV.
Moreover u is the unique solution to

e (1.12)
(h—u,v)=0, YveV. ’
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Proof. Tt is enough to show that (1.5) is equivalent to (1.12). Note that if (1.12)
holds then (1.5) holds. Conversely if (1.5) holds then for any w € V' one has

v=utweV

since V is a vector space. One deduces
+(u—h,w) >0 VweV

which is precisely (1.12). u = Py (h) is described in Figure 1.2 below. It is the
unique vector of V such that A — u is orthogonal to V. O

Ih

!

Figure 1.2: Projection on a vector space

1.2 The Riesz representation theorem

If H is a real Hilbert space we denote by H* its dual — i.e., H* is the set of
continuous linear forms on H. If h € H then the mapping

v +— (h,v) (1.13)

is an element of H*. Indeed this is a linear form that is to say a linear mapping
from H into R and the continuity follows from the Cauchy—Schwarz inequality

|(h, 0)| < [h|v]. (1.14)

The Riesz representation theorem states that all the elements of H* are of the
type (1.13) which means can be represented by a scalar product. This fact is easy
to see on R™. We will see that it extends to infinite-dimensional Hilbert spaces.
First let us analyze the structure of the kernel of the elements of H*.

Proposition 1.3. Let h* € H*. If h* # 0 the set
V={veH]|(h"v)=0} (1.15)

s a closed subspace of H of codimension 1, i.e., a hyperplane of H. (We denote
with brackets the duality writing (h*,v) = h*(v).)
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Proof. Since h* is continuous V is a closed subspace of H. Let h ¢ V. Such an h
exists since h* # 0. Then set
vg = h — Py(h) #0. (1.16)
Any element of v € H can be decomposed in a unique way as
v=Ayg+w (1.17)
where w € V. Indeed if w € V one has necessarily
(h*,v) = A(h", vp),
ie., A = (h*,v)/(h*,v9) and then

R W
T (hw) T ()
This completes the proof of the proposition. |

‘We can now show

Theorem 1.4 (Riesz representation theorem). For any h* € H* there exists a
unique h € H such that

(hyv) = (h*,v) Vv eEH. (1.18)

Moreover
(h™,v)
lv]

(This last quantity is called the strong dual norm of h*.)

|h| = |A*|« = Sup (1.19)
veEH

v#0

Proof. If h* = 0, h = 0 is the only solution of (1.18). We can assume then that
h* # 0. Let vg # 0 be a vector orthogonal to the hyperplane

V={veH|(h*v)=0},

(see (1.16), (1.17)). We set

h= <f|i(’)|”2°>vo. (1.20)

Due to the decomposition (1.17) we have
(h,v) = (h, Avg + w) = A(h,v0) = A(h*,v0) = (h*, Avg +w) = (h*, )
for every v € H. Thus h satisfies (1.18). The uniqueness of A is clear since
(h— b9 =0 YoeH=>h=h
(take v = h — 1/).
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Now from (1.20) we have

|(h*, vo)|

|h| = < |h*. (1.21)
|vol

and from (1.18)
h h

|h*|« = Sup &
v# 0 |v] v#0 |v]
This completes the proof of the theorem. O

1.3 The Lax—Milgram theorem

Instead of a scalar product one can consider more generally a continuous bilinear
form. That is to say if a(u,v) is a continuous bilinear form on H, then for every
ue H

v — a(u,v) (1.22)

is an element of H*. As for the Riesz representation theorem one can ask if every
element of H* is of this type. This can be achieved with some assumptions on a
which reproduce the properties of the scalar product, namely:

Theorem 1.5 (Lax-Milgram). Let a(u,v) be a bilinear form on H such that

e a is continuous, i.e., AN > 0 such that |a(u,v)| < Alu||v] Yu,v € H, (1.23)
e a is coercive, i.e., I\ > 0 such that a(u,u) > A\|u|®* Vu € H. (1.24)

Then for every f € H* there exists a unique uw € H such that
a(u,v) = (f,v) VveH. (1.25)
In the case where a is symmetric that is to say
a(u,v) = a(v,u) Yu,ve H (1.26)

then u is the unique minimizer on H of the functional

J(w) = za(v,v) — {£,0). (1.27)

Proof. For every u € H, by (1.23), v — a(u,v) is an element of H*. By the Riesz
representation theorem there exists a unique element in H that will be denoted
by Au such that

a(u,v) = (Au,v) Vv eE H.

We will be done if we can show that A is a bijective mapping from H into H.
(Indeed one will then have (f,v) = (h,v) = (Au,v) = a(u,v) Yv € H for a unique
uwin H.)



