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Preface

We present the new concept of growth envelopes and continuity envelopes
in function spaces. This originates from such classical results as the famous
Sobolev embedding theorem [Sob38], or, secondly, from the Brézis-Wainger
result [BW80] on the almost Lipschitz continuity of functions from a Sobolev
space HiT™P(R"), 1 < p < co. In the first case questions of growth are
studied: what can be said about the unboundedness of functions belonging
to, say, H;/p(]R”), 1 < p < 00? We introduce the growth envelope €;(X) =
(Eé( (t),ud) of a function space X C L, where

EX(t) ~sup {f*(1): IfIX]| <1}, O<t<1,

is the growth envelope function of X and ug € (0, o] is some additional index
providing an even finer description of the unboundedness of functions belong-
ing to X.

Instead of investigating the growth of functions one can also focus on their
smoothness, i.e., for X < C it makes sense to replace f*(t) with @,
where w(f, ) is the modulus of continuity. The continuity envelope function
EZ and the continuity envelope €c are introduced completely parallel to e d
and &g, respectively, and similar questions are studied.

These concepts are first explained in detail and demonstrated on some clas-
sical and rather obvious examples in Part I; in Part II we deal with these
instruments in the context of spaces of Besov and Triebel-Lizorkin type, B, ,
and F . respectively.

In the end we turn to some applications, e.g., concerning the asymptotic be-
haviour of approximation numbers of (corresponding) compact embeddings.
Further applications are connected with Hardy-type inequalities and limiting
embeddings. We discuss the relation between growth and continuity envelopes
of a suitable pair of spaces. Problems of global nature are regarded, and we
study situations where the envelope function itself belongs to or can be re-
alised in X, respectively.

I am especially grateful to Professor Hans Triebel; while he was preparing
his book [Tri01] (in which Chapter 2 is devoted to related questions) we could
discuss the material at various occasions. This led to the preprint version
[Har01], and also became part of [Har02]. But for some reason these results —

ix



X Preface

though extended, improved, used, cited already — were never published else-
where. In view of the substantial material, the idea appeared later to collect
it in a book rather than a number of papers. This gives me the opportu-
nity for special thanks to Professor David E. Edmunds who offered invaluable
mathematical and linguistic comments, and to Professor Haim Brézis who
encouraged me in that form of publication. Last but not least I appreci-
ate joint work and exchange of ideas on the subject with many colleagues,
in particular Professor Anténio M. Caetano and Dr. Susana D. Moura. Fi-
nally, I am indebted to my family for their never-ending patience and support.

Jena, March 2006 Dorothee D. Haroske
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Chapter 1

Introduction

We present our recently developed concept of envelopes in function spaces —
a relatively simple tool for the study of classical, and also rather complicated
spaces, say, of Besov or Triebel-Lizorkin type, respectively, in so-called “limit-
ing” situations. This subject is still very new, but in our opinion it has grown
to such a degree of maturity that it is now worth a coherent account. The
topic is studied in two steps: on a more general level, in Part I, where we do
not assume any knowledge of the scales of function spaces mentioned above,
and subsequently, in Part II, the results are essentially related to spaces of
type By , and Fy ;. This also explains the main structure of this book.

We first describe the common background for both parts and explicate the
programme afterwards. In fact, considerable parts of the outcomes were ob-
tained much earlier and already summarised in the long preprint [Har01]; but
for some reason they have not yet been published (apart from [Har(02], essen-
tially relying on [Har01]). However, we also complemented and extended the
presentation [Har01] quite recently.

The history of such questions starts in the 1930s with Sobolev’s famous
embedding theorem [Sob38]

Wk Q) = L.(Q), (1.1)

where © C R" is a bounded domain with sufficiently smooth boundary, L.,
1 < r < oo, stands for the usual Lebesgue space, and W;, keN, 1<p<oo,
are the classical Sobolev spaces. The latter spaces have been widely accepted
as one of the crucial instruments in functional analysis — in particular, in
connection with PDEs — and have played a significant role in numerous parts
of mathematics for many years. Sobolev’s famous result (1.1) holds for k€ N

with k < 7, and r such that b —% > —1 (strictly speaking, [Sob38] covers

the case % — % > f%, whereas the extension to % — % = —% was achieved
later). In the limiting case, when k = 2 € N, the inclusion (1.1) does not

hold for r = oo, whereas for all r < oo,
W2/P(Q) — L.(Q). (1.2)

The theory of Sobolev-type embeddings originates in classical inequalities
from which integrability properties of a real function can be deduced from



4 Envelopes and sharp embeddings of function spaces

those of its derivatives. In that sense (1.2) can be understood simply as the
impossibility of specifying integrability conditions of a function f € Wy’ /7 Q)
merely by means of L, conditions. In order to obtain further refinements of
the limiting case of (1.1) it becomes necessary to deal with a wider class of
function spaces. In the late 1960s Peetre [Pee66], Trudinger [Tru67], Moser
[Mos71], and Pohozaev [Poh65] independently found refinements of (1.1) ex-
pressed in terms of Orlicz spaces of exponential type, see also Strichartz
[Str72]; this was followed by many contributions in the last decades inves-
tigating problems related to (1.1) in detail. In 1979 Hansson [Han79] and
Brézis, Wainger [BW80] showed independently that

W/P(Q) — Lo, (log L), (), (1.3)

where 1 < p < oo, and the spaces L, (log L), () appearing in (1.3) provide
an even finer tuning, see also Hedberg [Hed72], and sharper results by Maz’ya
[Maz72] and [Maz05]. Recently we noticed a revival of interest in limiting em-
beddings of Sobolev spaces indicated by a considerable number of publications
devoted to this subject; let us only mention a series of papers by Edmunds
with different co-workers ([EGO96], [EGO97], [EGO00], [EK95], [EKP00]),
by Cwikel, Pustylnik [CP98], and — also from the standpoint of applications
to spectral theory — the publications [ET95] and [Tri93] by Edmunds and
Triebel. This list is by no means complete, but reflects the increased interest
in related questions in the last years. There are a lot of different approaches
to the modification of (1.1) in order to get — in the adapted framework —
appropriately optimal assertions. Apart from the original papers, assertions
of this type are indispensable parts in books dealing with Sobolev spaces and
related questions, cf. [AF03], [Zie89], [Maz85], [EE87], [EE04], but there is a
vast literature devoted to (extensions of) this subject.

Returning to the limiting case k = % (1.2), for instance, one can also ex-
tend the scale of admitted (source) spaces in another direction, first replacing
classical Sobolev spaces W, /p by the more general fractional Sobolev spaces

Hy /p , or even by spaces of type B, , and Fy , respectively. It is well-known,

for instance, that Bgy{lp > Lo if, and only if, 0 < p < 00, 0 < ¢ < 1 —
but what can be said about the growth of functions f € ByP otherwise, i.e.,
when B,%,p contains essentially unbounded functions ? Edmunds and Triebel
proved in [ET99b] that one can characterise such spaces by sharp inequalities
involving the non-increasing rearrangement f* of a function f: Let s be a
bounded, continuous, decreasing function on (0,1] and 1 < p < co. Then
there is a constant ¢ > 0 such that

1/p

j(——f*(t)”(t))pg < c |npse
0

| log t| t ‘ (1.4)
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for all f € Hy /p if, and only if, sz is bounded; there are further results
related to the case of Hy with 0<s <2 in [Tri99].

Recall that the scale F  of Triebel-Lizorkin spaces extends the (classical)
Sobolev scale further, whereas Besov spaces B, , have been well-known for a
long time, either when characterised by differences or — nowadays preferably -
in Fourier-analytical terms or via (sub-)atomic decompositions. They appear
naturally in signal analysis, in contemporary harmonic analysis, in stochas-
tics, and while studying approximation problems or solving PDEs; thus it is
of deep interest to understand these spaces very well — apart from the purely
functional analytic purpose. The theory of the scales By , and FJ , has been
systematically studied and developed by Triebel in the last decades; his series
of monographs [Tri78a), [Tri83], [Tri92], [Tri97], [Tri01], and the forthcoming
book [Tri06] can be regarded as the most complete treatment of related ques-
tions.

Assertions of type (1.4) are already linked to our concept of envelopes in
some sense. We realised that many contributions to the subject of limiting
embeddings and sharp inequalities as (partly) mentioned above, share a little
disadvantage — beside their unquestioned beauty: as far as characterisations
of spaces of type B, , or Fj  are concerned, they are usually bound to
a certain setting. That is, dealing with such embeddings, one asks, say, for
optimality of original or target spaces within a prescribed (fixed) context. We
prefer to look for some feature “belonging” to the spaces under consideration
only, and, moreover, defined as simply as possible (using classical approaches).
This would enable us to gain significantly from the rich history and many
forerunners. In view of the above-mentioned papers it was natural to choose
the non-increasing rearrangement f* as the basic concept on which our new
tool should be built. This led us to the introduction of the growth envelope
function of a function space X,

EL(t):== sup fr(t), O<t<lLl. (1.5)
IF1X1I<1

It turns out that in rearrangement-invariant spaces there is a connection be-
tween Sé( and the fundamental function ¢x; we shall derive further prop-

erties and give some examples. The pair & (X) = (c‘,’é{ @)y u ) is called the

growth envelope of X, where ué" ,0< ué’ < o0, is the infimum of all numbers
v satisfying
1/v

/ lf*(”] pe(d) | < cllfIx] (1.6)
0

£ (1)

for some ¢ > 0 and all f € X, and ug is the Borel measure associated with
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—log Eé( . The result reads for the Lorentz spaces L, , as
1
9 (LP,Q) = (t p7q> )

and for Sobolev spaces W;,

8=

Q‘G(W;):(t_ +%,p), 1 <p<oo, k<g. (1.7)

We also deal with some weighted L,-spaces, illuminating the difference be-

tween locally regular weights like (1 + |2[2)®/2, @ > 0, and corresponding
1

Muckenhoupt A, weights like |2|*, 0 < & <n(1— ). In Part II we consider

characterisations for spaces of type B, , and Fj , where n(% -1y <s< %.

Returning to our example (1.4) above one proves that
¢ (Hg/p) = (IIOgtll_% ,p) , 1l<p<oo, (1.8)
even in a more general setting. The counterpart for Besov spaces is given by
& By = (llogt]'"%, q), 1<q<oo, O<p<oo.  (19)

Unlike [Tri01, Ch. 2] where similar questions have been considered, we also
study (some) borderline and weighted cases.

In an appropriately modified context it also makes sense to consider em-
beddings like (1.1) and (1.2) in “super-critical” situations, that is, when
k > 2. Then by simple monotonicity arguments all distributions are es-
sentiaﬁy bounded; moreover, one even knows that

wWh—C (1.10)

in this case, where C stands for the space of all complex-valued bounded
uniformly continuous functions on R™, equipped with the sup-norm. Parallel
to the above question of unboundedness it is natural to consider and qualify
the continuity of distributions from W]f in dependence upon k and p. As is
well-known, the counterparts of (1.1) and (1.2) yield that for & <k < 241,
1<p<oo,

WE — Lip?, 0<a§k—g<1, (1.11)

and,

Witn/r — Lip®, 0<a<1, (1.12)
where Lip”%, 0 < a < 1, contains all f € C such that for some ¢ > 0
and all z,h € R®, |f(x+h) — f(z)| < c |h|* Similarly to (1.2), the case
a =1 in (1.12) is excluded (unless p = 1 as some special case), i.e., there are
functions from W, ™" that are not Lipschitz-continuous. However, as some
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compensation, one can consider the celebrated result of Brézis and Wainger
[BW80] in which it was shown that every function u in H;Jrn/ P 1< p< oo,
is “almost” Lipschitz-continuous, in the sense that for all z,y € R", 0 <
|z -yl < 3,

y [ ¥
ju(e) —u)] < clo—yl [logla—yl| 7 lulHY"7. (1.13)

Here c is a constant independent of z,y and wu. In [EH99] we investigated
the “sharpness” of this result (concerning the exponent of the log-term), as
well as possible extensions to the wider scale of F-spaces and parallel results
for B-spaces. Using the classical concept of the modulus of continuity w(f,t),
(1.13) can be reformulated as

(1.14)

)

w(fatl) _ < ¢ Hf|H;+n/P
o<t<1/2 t |logt| ?

which will be strengthened to

1 1/p
2

J[ELA) L) < e nmgeer
0

7

t |logt| t

and an assertion similar to (1.4).

Consequently, based on observations like (1.14) we shall focus on the smooth-
ness of functions instead of their growth; i.e., when X — C it makes sense to
replace f*(t) by @ in (1.5) and (1.6), and to introduce the continuity
envelope function

EX(t) = sup wf,t)
leixg<y ¢

R 0<t<l,

and the continuity envelope & in a way completely parallel to that of Sg
and &g, respectively. The famous Brézis-Wainger result [BW80] then appears
as

e (Hy/?) = (J1ogt]' #,p), 1<p<oo,

whereas we obtain for Lipschitz spaces Lip® of order 0 < a < 1,
€ (Lip®) = (7079, 00) .
The counterpart of (1.7) reads as

e (wy) = (G, ), (1.15)



