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Series Foreword

Artificial intelligence is the study of intelligence using the ideas and methods
of computation. Unfortunately, a definition of intelligence seems impossible
at the moment because intelligence appears to be an amalgam of so many
information-processing and information-representation abilities. Of course
psychology, philosophy, linguistics, and related disciplines offer various
perspectives and methodologies for studying intelligence. For the most part,
however, the theories proposed in these fields are too incomplete and too
vaguely stated to be realized in computational terms. Something more is
needed, even though valuable ideas, relationships, and constraints can be
gleaned from traditional studies of what are, after all, impressive existence
proofs that intelligence is in fact possible. Artificial intelligence offers a new
perspective and a new methodology. Its central goal is to make computers
intelligent, both to make them more useful and to understand the principles that
make intelligence possible. That intelligent computers will be extremely
useful is obvious. The more profound point is that artificial intelligence aims
to understand intelligence using the ideas and methods of computation, thus
offering a radically new and different basis for theory formation. Most of the
people doing work in artificial intelligence believe that these theories will
apply to any intelligent information processor, whether biological or solid
state.

There are side effects that deserve attention, too. Any program that will
successfully model even a small part of intelligence will be inherently massive
and complex. Consequently, artificial intelligence continually confronts the
limits of computer-science technology. The problems encountered have been
hard enough and interesting enough to seduce artificial intelligence people into
working on them with enthusiasm. It is natural, then, that there has been a
steady flow of ideas from artificial intelligence to computer science, and the
flow shows no sign of abating.



The purpose of The MIT Press Series in Artificial Intelligence is to provide
people in many areas, both professionals and students, with timely, detailed in
formation about what is happening on the frontiers in research centers all over
the world.

Patrick Henry Winston
J. Michael Brady
Daniel Bobrow



Preface

The need for more expressive systems of knowledge representation is not
controversial although it is still debatable whether or not such systems have to
be based on formal logic. In this book we shall take it is as read that the formal
approach is a worthy one. Our objective is to explore the development of
formal languages and appropriate logics for that aspect of knowledge
representation concerned with reasoning about truth and modality. A great
deal of the current literature in Artificial Intelligence is devoted to the
development of formalisms which facilitate the expression of modal concepts.
Much of this work, however, is based upon the theories of modality and truth
which were developed in the period 1960—1980. In the last ten years there has
been a great deal of activity within the logical community centered upon the
development of logics of truth and modality. Our objective is to bring this
material to the attention of Al researchers by putting it in a context where it
might be directly applicable to AI knowledge representation.
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1 Reasoning Agents

A great deal of research in Artificial Intelligence is concerned with the
introduction and exposition of languages of knowledge representation. Many
of these new languages are variations or extensions of languages which have
their origins in the literature of formal logic. The reasons for this are obvious.
Formal logic has been concerned throughout its history with the representation
of informal argument, its primary goal being the representation of informal
arguments in a language where the form of the argument and its component
sentences are made explicit and unambiguous.

The majority of this formal work in knowledge representation has been
carried out within the language and proof theory of the first-order Predicate
Calculus. Moreover, many informal systems of knowledge representation have
been recast within the Predicate Calculus with the implicit belief that such
recasting provides a formal semantics for these formalisms and thereby assigns
them a degree of clarity and respectability. This may well be true but what is not
clear is that the Predicate Calculus is rich enough in expressive power for the
full range of applications which knowledge representation seems to subsume.
There are many areas where the natural representation of informal arguments
appears to demand more facilities than those available within the Calculus. The
representation of arguments involving time and modality are two topics which
immediately spring to mind. Indeed, within the Al community itself
(Moore[1980], [1984], Konolige[1986], McDermott [1982], Allen [1984]) such
extensions to the Predicate Calculus have been explored with much benefit.

This book is largely concerned with the representation of certain modal
notions where modality will be given a fairly liberal interpretation. However,
before we embark on any lengthy discussion of the nature of modality it seems
prudent to examine the general goals of knowledge representation. What
exactly is it that we need to represent and reason about?

1.1 Modality and Knowledge Representation

Reasoning agents must be capable of representing and reasoning about what
they and other agents believe, know and hold true. This ability seems to be



common ground for many different areas of Al. For example, any natural
language program which has to form part of a dialogue system must be capable
of representing and reasoning about the knowledge and belief of the players or
agents in the system. Moreover, any reasonable system will have to be able to
distinguish between these various modalities: to believe a proposition is not the
same as knowing it since it is clearly possible for an agent to believe false
propositions. A certain tradition in epistemology interprets knowledge as
Justified true belief, and under this interpretation knowing a proposition
implies it is both believed and true. On the other hand, it may be both true and
believed by some agent but this is not sufficient grounds for claiming that the
agent knows the proposition since it may be believed for completely spurious
reasons. Consequently, a theory of knowledge representation must be capable
of representing and distinguishing between assertions of the form:

(1) Agent A believes that p
(2) Agent A knows that p
(3) Agent A believes some proposition which is false

The upshot of these simple observations seems to be that any adequate theory
of knowledge representation must in part be a theory of truth and modality.
The central concern of such a theory must therefore be with the development of
a language in which such assertions as (1), (2) and (3) can be represented
together with the formulation of appropriate logics for such modal notions.
Much of the present study is concerned with the development of such languages
and logics. Not that we shall provide anything like a definitive answer. We shall
not enter into debate about the logics which are most appropriate for any
particular modality; this is already a well documented, even if controversial,
area. Our goal is much less ambitious: we aim to draw certain boundaries
around the possible form of such theories. The need for this stems from the
particular nature of the theories we shall advocate. We firmly believe that the
most natural and computationally tractable theory is a first-order one. This
imposes limitations on the logics of modality and truth.

To some extent this goal might be taken as identical to that of natural
language semantics, or rather that part of semantics concerned with truth and
modality. One important aspect in which our task is different concerns the
concentration in semantics on the systematic relation between syntactic
structure and semantic representation. We are at liberty to concentrate on the
language of semantic representation and only appeal to natural language as a
guide since we are not primarily concerned with the syntax—semantics
connection. Rather we are concerned with the language and nature of semantic
representation. This is important since it enables us largely to divorce our study
from considerations which relate directly to natural language syntax and how



the syntactic or grammatical form of a sentence contributes to its logical
representation. However, this separation is a delicate one and has to be
exercised with care. In the end, our languages of knowledge representation
must be as naturally expressive as natural language itself and the insights of
natural language semantics cannot be ignored.

1.2 Propositions and Modality

One of the first questions which arises in such an endeavour concerns the
arguments of these modal connectives: what is it that is believed, known or
taken to be true? This is, of course, a non-trivial philosophical question and
one that perhaps has no definitive answer. Nevertheless it is not one that can be
avoided in any serious study of the issues at hand: the answer given to this
question either explicitly or implicitly dictates the form of the theory that will
be championed. Traditionally, propositions are taken to be the objects of
belief, knowledge and truth. Of course, this is just a name to hang the problem
on since now we are forced to face the question what is a proposition?
Fortunately, the literature is full of possible answers and the formal theory of
propositions largely determines the language and content of the resulting
theory of modality. In what follows we shall explore various proposals from the
Al and philosphical literature and see how they meet the needs of knowledge
representation.

1.3 Possible Worlds

In one of the major paradigms, the notion of possible worlds plays the leading
role. Propositions are taken to be sets of possible worlds and properties are
understood as functions from individuals to propositions. The modal and
doxastic operators are then treated as functions from propositions to
propositions. In general, modal operators are analysed as functions which send
a proposition P to that proposition which consists of all those worlds which are
accessible from elements of P. Different choices of the relation of accessibility
lead to different modal and doxastic notions (Hintikka [1962], Kripke[1963]).

This is the classical theory and forms the underlying semantic theory of
first-order modal logic. The language of the latter is derived from the language
of first-order logic by the addition of new sentential operators (the modal
connectives) whose logic is given by one of the standard systems of modal
logic. The different logics correspond to different properties of the relation of
accessibility. In this approach, the modal connectives operate on sentences
of the language where the latter are taken to denote propositions (i.e. sets of
worlds).



The elegance of this simple theory together with the fact that the different
modal and doxastic notions can be distinguished by varying the constraints on
the accessibility relation are largely responsible for its abiding influence on both
logicians and computer scientists. As it stands, however, it will not serve our
purposes.

1.4 Higher-Order Modal Logic

This first-order approach will not be expressive enough for the goals of
knowledge representation. For one thing there is a prima facie need to quantify
over propositions and properties. Consider the sentences:

(4) Agent A believes a false proposition
(5) Every proposition agent A believes is false
(6) Agent A can perform every task agent B can

The expression of (4), (5) and (6) demands more than first-order modal logic
since they involve quantification over propositions and properties and this is
not available in first-order modal logic. Other reasons might be marshalled to
justify such quantificational facilities. For example, in Ramsay [1988] the need
for quantification over properties is illustrated by the desire to formulate frame
axioms in a natural and succinct fashion. Here one has to stipulate those
aspects of a situation which remain unchanged under a specified revision, and
the natural and elegant way of achieving this involves quantification over
properties.

The introduction of such quantification moves us into the domain of
higher-order intensional logic, the most highly developed version of which is
due to Montague [1973]. In this logic we are able to quantify over propositions
and properties and much else besides. The different kinds of objects are
delineated by the formal notion of rype: types are the basic ones [individuals
(e) and truth values (¢)], or function types (the type of functions from one type
to a second), or the type of functions from the type of possible worlds (or some
more complex index) to any existing type. Propositions are then analysed as
functions from worlds to truth values (or equivalently sets of worlds) and
properties as functions from individuals to propositions. The variables of the
language are decorated with these types so, for example, the content of (4), (5),
(6) can be formally expressed as

(4")  3xcwnBalx)& ~(x))
(5")  Vxwn(Ba(x) = ~(x))
(6")  VYX¢.(w.n(Perform(B, x) = Perform(A, x))

where the variables x(., range over propositions and the Xx¢.(w.y; over
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properties. In the higher-order intensional logics, quantification over
individuals, propositions and properties is built into the language of the theory.
Indeed, quantification over even higher type objects is permitted. This
approach thus appears to be expressive enough for our needs but suffers from a
possible conceptual drawback.

1.5 Fine-Grained Propositions

The major objection to the whole possible world approach, at least in regard to
its application to the doxastic modalities such as belief and knowledge,
concerns the nature of propositions within this regime. It is argued that
propositions, as sets of possible worlds, are too coarse-grained to serve as
arguments to the doxastic operators of knowledge and belief: if two sentences
denote exactly the same set of possible worlds, then an agent who believes one
is committed to believing the other. While this may be acceptable for certain
notions of belief (e.g. rational belief) it does not seem persuasive for all
notions. Mathematical belief seems to be a case in point. Since mathematical
assertions are naturally taken to be necessarily true or necessarily false, under
this account of belief an agent who believes one true assertion of mathematics
(e.g. 2+2=4) is thereby committed to believing all true assertions of
mathematics. This seems not to supply an adequate account of mathematical
belief. This criticism of the possible world approach to the attitudes of belief
and knowledge naturally leads to the demand for a more fine-grained notion of
proposition: one that will not commit an agent to believing all the logical
consequences of his or her basic beliefs.

1.6 Propositions as Primitive

One proposal for overcoming this problem involves kicking away the possible
world ladder which supports the notion of proposition. Propositions are then
not unpacked in terms of possible worlds or any other supposedly more
fundamental notion but taken as primitive. Subsequently, we are not forced to
take the equality of propositions to be given by the extensional equivalence
between sets of worlds. Rather, we are free to invest the notion of proposition
with the properties we see fit. Thomason [1980] develops such an approach for
higher-order intensional logic and thus combines the expressive power of
Montague’s intensional logic with a more fine-grained notion of proposition.
In Thomason’s simple type theory there are three basic types: e, ¢, and p, where
e is the type of individuals, ¢ the type of truth-values, and p the type of
propositions. Higher-order types are constructed from these in the standard
way. In addition, Thomason introduces a simple truth predicate to express the



fact that a proposition is true. The Lambda Calculus (typed) is built into the
system in the way familiar from Montague. Thomason’s logic is quite complex
and perhaps hard to work with in terms of the application at hand.
Nevertheless, this is a step in the right direction.

1.7 Higher-Order Theories and Computational Tractability

Both the approaches of Montague and Thomason are versions of higher-order
intensional logic. Indeed, it is exactly this quality which enables the expression
of the logical content of sentences such as

(7) A believes everything B believes
(8) Something A believes is true

These can be expressed in the language of Montague’s higher-order intensional
logic (or with suitable modifications in Thomason’s) by

(7")  ¥xwn(bel(B, x) = bel(A, x))
(8")  3Ixcwn(bel(A, x) & X)

Unfortunately, this expressive power comes with a price tag. While it is true
that first-order logic is only semi-decidable, higher-order logic is much worse.
In first-order logic we can construct theorem provers which return a proof for
any valid well-formed formulae even if they may fail to terminate when applied
to invalid ones; in higher-order logic the theorem provers may fail to terminate
even on the valid formulae. This is, of course, not a sufficient reason for
discarding the higher-order approach and certainly not in the absence of a
better alternative. But it is at least a reason for being somewhat circumspect
about rushing headlong into higher-order logic.

1.8 Propositions as Sentences

A second and completely different proposal for the analysis of intensionality
emanates largely from the AI community itself and seeks to view propositions
as sentences in some language of semantic representation. Konolige [1986] and
Moore[1980] implicitly seem to advocate such a view. This certainly addresses
the fact that propositions need to be fine-grained, but there are obvious
philosophical objections to such an approach. What is believed, known,
deemed to be possible, etc. are not sentences in some language: sentences are
just marks or symbols and the objects of knowledge or belief have semantic
content; one cannot be said to believe a sentence but rather one stands in
relation to its semantic content. Whatever the merits of this opinion, there are
more devastating problems for this syntactic analysis of propositions.
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Let L be the language in which such propositions are to be expressed. Then,
writing x € L to indicate that x is a sentence of the language L, we can express:

(9) John believes something false

as
(9') 3x(xe€ L & bel(John, x) & false(x))

This looks promising in that we have expressed the fact that John believes
something false or believes a proposition which is false where propositions are
identified with the sentence of L. But now we face a problem with regard to the
language in which (9') is expressed. This is not L and cannot be without
violating predicativity. Suppose there are two believers, John and Peter, and
Peter wishes to express the assertion that John believes something false. Then
Peter’s language must be expressive enough to express (9') and consequently
must have access to the propositions of John’s language in that its variables of
quantification must range over the sentences of L. One way of achieving this is
to employ the Tarskian Object/Metalanguage distinction.

The main problem with such an approach concerns its expressive power.
Consider the sentences:

(10) A believes that everything that B believes is true
(11) B believes that everything that A believes is true

Let Oas (= Mo,) be the object language of A which also serves as the
metalanguage for the object language Og of B. Then we can attempt to express
(10) as

(10") bel(A, Yx¢€ Og(bel(B, x) — true(x)))

where x € Og has its obvious interpretation and facilitates quantification over
the wff of B’s language. In order to express (11), however, we require a
language which has the facility to quantify over the the wff/beliefs of A. This
cannot be achieved in Og or O4 since we now wish to quantify over A’s beliefs.
We must resort to a metalanguage Mo,. We can then attempt a statement of

(11):
(11") bel(B,vxe€ Oa(bel(A, x) — true(x)))

But now observe that (10") does not include the belief of B expressed by (11')
since in O we can only quantify over those beliefs expressible in Og. The belief
expressed by (11") is only expressible in a further metalanguage Mo,. We can,
of course, replace (10') by (10”):

(10") bel(A, Yx € Mo, (bel(B, x) = true(x)))

but then (11") does not express what we think it does. Indeed, no matter how
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far we climb up the object/metalanguage hierarchy we will not be able to
capture the intuitive content of (10) and (11); some of the beliefs of A or B will
always be left out. This whole approach runs into problems of expressive
power: we are unable to express mutual belief and the reason stems from the
hierarchical impositions placed on the organization of the languages of
representation. This should be seen in contrast to the higher-order approach
where the proposition variables range over the domain of propositions and
include the denotations of the sentences expressed by (10) and (11). This is
formally sanctioned by the comprehension schema of higher-order intensional
logic which in particular guarantees that for every sentence of the formal
language there is a proposition which furnishes its denotation.

This object/metalanguage analysis parallels the Tarski[1937] account of
truth. In this theory there is a hierarchy of object/metalanguages and the
metalanguage at each stage contains the truth predicate of the previous
language. Tarski’s theory of truth suffers similar drawbacks of expressive
power. Moreover, there are obvious intuitive objections to this
object/metalanguage approach. Natural language has no markings
corresponding to these levels. According to this account every sentence must
live somewhere in the hierarchy but given an arbitrary natural language
sentence we seem unable to place it in such a hierarchy. Indeed, such
cumbersome information is totally irrelevant to everyday communication.
There are no good reasons to think that theories of knowledge representation,
based upon such an explicit marking of levels, would be any less cumbersome
and inefficient.

1.9 Syntactic Modality

One way out of this impasse is to remove the object/metalanguage distinction
and identify the languages. The modal and truth operators now take sentences
of the language (or their quoted relations) as arguments. Perlis[1988] has
advocated such an approach to knowledge representation. This approach
would certainly increase the expressive power of the language. Moreover, we
would have a simple first-order system in which to express such modal notions
since under this regime the modal operators are naturally analysed as simple
first-order predicates. This appears to be in keeping with natural language
itself. To see this consider the following sentences:

(12) John believes that Peter sings

(13) Mary thinks that Harry is a man

(14) Peter knows that he will win

(15) It is true that Peter believes that John sings



