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Preface

This book offers a graduate-level exposition of selected topics in modern approxima-
tion theory. A large portion of the book focuses on multivariate approximation theory,
where much recent research is concentrated. Although our own interests have influenced
the choice of topics, the text cuts a wide swath through modern approximation theory, as
can be seen from the table of contents. We believe the book will be found suitable as a
text for courses, seminars, and even solo study. Although the book is at the graduate
level, it does not presuppose that the reader already has taken a course in approximation
theory.

Topics of This Book

A central theme of the book is the problem of interpolating data by smooth multivariable
functions. Several chapters investigate interesting families of functions that can be
employed in this task; among them are the polynomials, the positive definite functions,
and the radial basis functions. Whether these same families can be used, in general, for
approximating functions to arbitrary precision is a natural question that follows; it is
addressed in further chapters.

The book then moves on to the consideration of methods for concocting approxi-
mations, such as by convolutions, by neural nets, or by interpolation at more and more
points. Here there are questions of limiting behavior of sequences of operators, just as
there are questions about interpolating on larger and larger sets of nodes.

A major departure from our theme of multivariate approximation is found in the
two chapters on univariate wavelets, which comprise a significant fraction of the book.
In our opinion wavelet theory is so important a development in recent times—and is so
mathematically appealing—that we had to devote some space to expounding its basic
principles.

The Style of This Book

In style, we have tried to make the exposition as simple and clear as possible, electing
to furnish proofs that are complete and relatively easy to read without the reader needing
to resort to pencil and paper. Any reader who finds this style too prolix can proceed
quickly over arguments and calculations that are routine. To paraphrase Shaw: We have
done our best to avoid conciseness! We have also made considerable efforts to find sim-
ple ways to introduce and explain each topic. We hope that in doing so, we encourage
readers to delve deeper into some areas. It should be borne in mind that further explo-
ration of some topics may require more mathematical sophistication than is demanded
by our treatment.

ix



X Preface

Organization of the Book

A word about the general plan of the book: we start with relatively elementary matters
in a series of about ten short chapters that do not, in general, require more of the reader
than undergraduate mathematics (in the American university system). From that point
on, the gradient gradually increases and the text becomes more demanding, although
still largely self-contained. Perhaps the most significant demands made on the technical
knowledge of the reader fall in the areas of measure theory and the Fourier transform.
We have freely made use of the Lebesgue function spaces, which bring into play such
measure-theoretic results as the Fubini Theorem. Other results such as the Riesz Repre-
sentation Theorem for bounded linear functionals on a space of continuous functions
and the Plancherel Theorem for Fourier transforms also are employed without com-
punction; but we have been careful to indicate explicitly how these ideas come into play.
Consequently, the reader can simply accept the claims about such matters as they arise.
Since these theorems form a vital part of the equipment of any applied analyst, we are
confident that readers will want to understand for themselves the essentials of these
areas of mathematics. We recommend Rudin’s Real and Complex Analysis (McGraw-
Hill, 1974) as a suitable source for acquiring the necessary measure theoretic ideas, and
the book Functional Analysis (McGraw-Hill, 1973) by the same author as a good intro-
duction to the circle of ideas connected with the Fourier transform.

Additional Reading

We call the reader’s attention to the list of books on approximation theory that immedi-
ately precedes the main section of references in the bibliography. These books, in gen-
eral, are concerned with what we may term the “classical” portion of approximation
theory—understood to mean the parts of the subject that already were in place when the
authors were students. As there are very few textbooks covering recent theory, our book
should help to fill that “much needed gap,” as some wag phrased it years ago. This list of
books emphasizes only the systematic textbooks for the subject as a whole, not the spe-
cialized texts and monographs.
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1

Introductory Discussion
of Interpolation

We shall be concerned with real-valued functions defined on a domain X, which need not
be specified at this moment. (It will often be a subset of R, ]Rz, ..., but can be more gen-
eral.) In the domain X a set of n distinct points is given:

N= {xl,xz, ...,xn}

These points are called nodes, and N is the node set. For each node x; an ordinate
4; € Ris given. (Each 4, is a real number.) The problem of interpolation is to find a suit-
able function F : X — R that takes these prescribed n values. That is, we want

F(x) =4 (1=i=n)

When this occurs, we say that F interpolates the given data {(xl., )Li)};’:l. Usually F
must be chosen from a preassigned family of functions on X.

A wide variety of functions F may be suitable. Figures 1.1 and 1.2 show 12 dif-
ferent interpolation functions for a single data set. The nodes are 5 real numbers. They
and the specified ordinates are given in this table:

In Figure 1.1a, the raw data points are shown. In Figures 1.1b to 1.1f, F has the form
F(x)= Z? ¢ju(x — x;),in which u is a function of our choosing. First we took a B-spline
of degree 0. To avoid the discontinuous nature of this example, we then took u to be a
B-spline of degree 1, as shown in Figure 1.1c. To avoid discontinuities in the first two
derivatives, we then let u be a cubic B-spline, as in Figure 1.1d. In Figure 1.1e we show
the interpolant when u(x) = |x[, and in Figure 1.1f we used u(x) = |x|'/2.
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Further examples are shown in Figure 1.2. Here we have used the same data as in
Figure 1.1, but a different choice of interpolating functions. Specifically, 1.2a employs a
fourth-degree polynomial; 1.2b employs a natural cubic spline; 1.2¢ is given by the
Interpolation command in Mathematica and is also a cubic spline. In 1.2d, we used a
cubic B-spline, B3, determined by integer knots, and interpolated with Z? c,-B3 (x —x,).
In 1.2e, we used Y. cie“("f'x")z, and in 1.2f we used, in the same manner, a 0-degree
B-spline. Some variations in scaling are noticeable in the figures.

The examples in Figures 1.1 and 1.2 suggest the great diversity among different
types of interpolating functions. The selection of an appropriate type of interpolant must
be made according to further criteria, above and beyond the basic requirement of inter-



Introductory Discussion of Interpolation 3

12.5E 12.5 ;
10F 10 f
75§ 75F
sf 5F
25fF 25k
] 2
25 3 -2.5
sk "
Figure 1.2a Figure 1.2b
125 125¢
10 | 10f
75¢F 75f
5F 5f
25F 25F /\\
E 2 6 8
-25 -25f \/
-5 5t
Figure 1.2¢ Figure 1.2d
125 ¢ 125
10F 10
75 E 75
5F 5

I ANIYANY NI T L a.

E 2 N 6 8
-2.5 f -2.5

sk -

Figure 1.2¢ Figure 1.2f

polation. For example, in a specific application we may want the interpolating function
to have a continuous first derivative. (That requirement would disqualify most of the
functions in Figure 1.1.)

The linear interpolation problem is a special case that arises when F is to be cho-
sen from a prescribed n-dimensional vector space of functions on X. Suppose that U is
this vector space and that a basis for U is {ul, By 5 s un}. The function F that we seek
must have the form
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When the interpolation conditions are imposed on F, we obtain
n
A= Filp) = chuj(x,-) (1=i=n)
i=1

This is a system of n linear equations in n unknowns. It can be written in matrix
form as Ac =y, or in detail as

up(xp)  uplxp) o u(xy) c A
up(xp)  up(xp) o u,(x) o |_| A
uy (x,) U (xn) o Uy (xn) Cn j'n

The n X n matrix A appearing here is called the interpolation matrix. In order that our
problem be solvable for any choice of ordinates 4, it is necessary and sufficient that the
interpolation matrix be nonsingular. The ideal situation is that this matrix be nonsingu-
lar for all choices of n distinct nodes.

THEOREM 1. Let U be an n-dimensional linear space of functions on X.
Let x|, X, ..., x,, be n distinct nodes in X. In order that U be capable of
interpolating arbitrary data at the nodes it is necessary and sufficient that
zero data be interpolated only by the zero-element in U.

Proof. The space U can furnish an interpolant for arbitrary data if and only if the inter-
polation matrix A is nonsingular. An equivalent condition on the matrix A is that the
equation Ac = 0 can be true only if ¢ = 0. [ ]

Example. Let X = R and let uj(x) =x/7! forj=1,2,...,n. An n X n interpolation
matrix in this special case is called a Vandermonde matrix. It looks like this:

2 s n—1
1 X4 xé X, 1
n—
V= 1 X, X5 X,
2 n—1
1 X, x, X,

The determinant of V is given by the formula

detV = l—[ (xi—xj)

I1=j<i=n

This is obviously nonzero if and only if the nodes are distinct. Hence the interpolation
problem has a unique solution for any choice of distinct nodes. We can also use Theorem
1 to see that V is nonsingular. Thus, we consider the “homogeneous” linear problem,
in which we attempt to interpolate zero data. The solution will be a polynomial of
degree at most n — 1 that takes the value 0 at each of the n nodes. Since a nonzero
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polynomial of degree at most n — 1 can have at most n — 1 zeros, we conclude that the
zero polynomial is the only possible solution. [ ]

The Vandermonde matrix occurs often in mathematics. Refer to Rushanan [Rush],
Grosof and Taiani [GT], Cheney [C1], for example. It is ill-conditioned for numerical
work. See Gautschi, [Gaul, Gau2].

An n-dimensional vector space U of functions on a domain X is said to be a Haar
space if the only element of U which has more than n — 1 roots in X is the zero element.
The next theorem provides some properties equivalent to the Haar property. In the theo-
rem, we refer to point-evaluation functionals. If V is a vector space of functions on a
set X, and if x is a point of X, then the point-evaluation functional corresponding to x is
denoted by x* and is defined on V by

x*(f) =) (fEV)

Obviously x* is linear, because
x*(af + g) = (of + f)x) = af (¥) + fg(x) = ax™(f) + fx"(g)

THEOREM 2. Let U have the basis {ul, Uy s un}. These properties are
equivalent:

a. U is a Haar space

b. det (uj (xi)) # 0 for any set of distinct points x|, x5, ..., x, in X

c. For any distinct points x|, x,, ..., x, in X, the set of point-evaluation
functionals x|, x5, ..., x, spans the algebraic dual space U

d. Ifx,, x,, ..., x,, are distinct in X and if 3", Jgu;(x;)) = 0 for
J=1,2,..., nthen either at least n + 1 of the coefficients J; are
nonzero, or 3" | |4l =0

Proof. To show that a implies b, suppose b false. Since the determinant of (uj (x)) is

zero, the matrix is singular, and there exists a nonzero vector (¢y» ¢34 ..., ¢,) such that
Z;’zl ¢juj(x) =0, (1=<i=n). Put u= Zj’;l c;u;. Since {uy uy, ..o )} is linearly
independent, u # 0. But u(x;) = 0 for 1 =i = n. Hence a is false.

To show that b implies ¢, suppose b true. Then the set {x}, x5, ..., x} is linearly

independent when these functionals are restricted to U. Indeed, if Zf:l al.xlﬁ* | U=0,
then3?_ | a;x/(u) =0for1 =j=<n,andbyb, >, [a;] = 0.Since U" is of dimension
n, the functionals span U™,

To show that ¢ implies d, assume c. Let Xy, ..., X,, be distinct points that satisfy
Z;"zl A; u; (x;) =0 for 1 =j=n. If m=n, then by ¢ we can take additional points and
obtain a basis {x}, ..., x } for U*. Then the subset {x, ..., x" } is linearly independent on
U and all 4, are zero. If m > n and Z:"zl |/1i| # 0 then at least n + 1 of the /; are nonzero,
for otherwise we will have a nontrivial linear combination of n (or fewer) x ,* that vanishes
on U, contrary to c.

To prove that d implies a, assume d and take m = n. Then the equation
2.0y Au;(x) = 0for 1 <j=nimplies >, | 4,| = 0. Hence the matrix (u/ (x,)) is non-
singular. Thus if (¢, c,, ..., ¢,) # 0, we cannot have Z’;] cju; (x;) = 0. In other words,

j
a nonzero member of U cannot have n zeros. [



