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Preface

In 1979 I gave graduate courses at the University of Zurich and lectured
in the “Troisiéme Cycle de la Suisse Romande’ (a consortium of four uni-
versities in the french-speaking part of Switzerland), and these lectures
were the basis of the ‘Springer Lecture Notes in Physics’, Volume 150,
published in 1981. This text appeared in German, because there have
been few modern expositions of the general theory of relativity in the
mother tongue of its only begetter. Soon after the book appeared, W.
Thirring asked me to prepare an English edition for the ‘Texts and Mono-
graphs in Physics’. Fortunately E. Borie agreed to translate the original
German text into English. An excellent collaboration allowed me to re-
vise and add to the contents of the book. I have updated and improved
- the original text and have added a number of new sections, mostly on
astrophysical topics. In particular, in collaboration with M. Camenzind I
have included a chapter on spherical and disk accretion onto compact
objects.

This book divides into three parts. Part I develops the mathematical
tools used in the general theory of relativity. Since I wanted to keep this
part short, but reasonably self-contained, I have adopted the dry style of
most modern mathematical texts. Readers who have never before been
confronted with differential geometry will find the exposition too ab-
stract and will miss motivations of the basic concepts and constructions.
In this case, one of the suggested books in the reference list should help
to absorb the material. I have used notations as standard as possible. A
collection of important formulae is given at the end of Partl. Many
readers should start there and go backwards, if necessary.

In the second part, the general theory of relativity is developed along
rather traditional lines. The coordinate-free language is emphasized in
order to avoid unnecessary confusions. We make full use of Cartan’s cal-
culus of differential forms which is often far superior computationally.
The tests of general relativity are discussed in detail and the binary pul-
sar PSR 1913 + 16 is fully treated.

The last part of the book treats important aspects of the physics of
compact objects. Some topics, for example the cooling of neutron stars,
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are discussed in great detail in order to illustrate how astrophysical prob-
lems require the simultaneous application of several different disciplines.

A text-book on a field as developed and extensive as general relativity
and relativistic astrophysics must make painful omissions. Since the em-
phasis throughout is on direct physical applications of the theory, there is
little discussion of more abstract topics such as causal spacetime struc-
ture or singularities. Cosmology, which formed part of the original lec-
tures, has been omitted entirely. This field has grown so much in recent
years that an entire book should be devoted to it. Furthermore, Wein-
berg’s book still gives an excellent introduction to the more established
parts of the subject.

The reference list near the end of the book is confined to works actu-
ally cited in the text. It is certainly much too short. In particular, we have
not cited the early literature of the founders. This is quoted in the classic
article by W. Pauli and in the wonderful recent book of A. Pais ‘Subtle is
the Lord’, which gives also a historical account of Einstein’s struggle to
general relativity.

The physics of compact objects ist treated more fully in a book by S.
L. Shapiro and S. A. Teukolsky, which just appeared when the final
pages of the present English edition were typed.

I thank E. Borie for the difficult job of translating the original Ger-
man text and her fine collaboration. I am particularly grateful to M.
Camenzind for much help in writing the chapter on accretion and to J.
Ehlers for criticism and suggestions for improvements. I profited from
discussions and the writings of many colleagues. Among others, I am in-
depted to G. Boerner and W. Hillebrandt. R. Durrer, M. Schweizer, A..
Wipf and R. Wallner helped me to prepare the final draft. I thank D.
Oeschger for her careful typing of the German and English manuscripts.

For assistance in the research that went into this book, I thank the
Swiss National Science Foundation for financial support.

Finally I thank my wife Maria for her patience.

Zurich, July 1984 N. Straumann
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In this purely mathematical part, we develop the most important
concepts and results of differential geometry which are needed for
general relativity theory.

The presentation differs little from that in many contemporary
mathematical text books (however, some topics, such as fiber bundles,
will be omitted). The language of modern differential geometry and the
“intrinsic” calculus on manifolds are now frequently used by workers in
the field of general relativity and are beginning to appear in textbooks
on the subject. This has a number of advantages, such as:

(1) It enables one to read the mathematical literature and make use of
the results to attack physical problems.

(ii) The fundamental concepts, such as differentiable manifolds, tensor
fields, affine connection, and so on, adopt a clear and intrinsic
formulation.

(i11) Physical statements and conceptual problems are not confused by
the dependence on the choice of coordinates. At the same time,
the role of distinguished coordinates in physical applications is
clarified. For example, these can be adapted to symmetry prop-
erties of the system.

(iv) The exterior calculus of differential forms is a very powerful
method for practical calculations; one often finds the results faster
than with older methods.

Space does not allow us always to give complete proofs and
sufficient motivation. In these cases, we give detailed references to
the literature (Refs. [1]—[8]) where these can be found. Many readers
will have the requisite mathematical knowledge to skip this part after
familiarizing themselves with our notation (which is quite standard).
This is best done by looking at the collection of important formulae at
the end (p. 70).



1. Differentiable Manifolds

A manifold is a topological space which locally looks like the space
IR” with the usual-topology.

Definition 1.1: An n-dimensional topological manifold M is a topological
Hausdorff space with a countable base, which is locally homeomorphic
to IR”. This means that for every point p € M there is an open neighbor-
hood U of p and a homeomorphism

h:U->U
which maps U onto an open set U’ = R".

As an aside, we note that a topological manifold M also has the
following properties:
(i) Mis o-compact;
(i) M is paracompact and the number of connected components is at
most denumerable.

The second of these properties is particularly important for the
theory of integration. For a proof, see e.g. [2], Chap. II, Sect. 15.

Definition 1.2.: If M is a topological manifold and A: U— U’ is a
homeomorphism which maps an open subset U < M onto an open
subset U’ < R”, then & is a chart of M and U is called the domain of
the chart or local coordinate neighborhood. The coodinates (x!,..., x")
of the image 4 (p) € R” of a point p € U are called the coordinates of p
in the chart. A set of charts {h,|a € I} with domains U, is called an
atlas of M, if U U,= M. If h, and hg are two charts, then both define

ael
homeomorphisms on the intersection of their domains Uyp:= U, N Ug;
one thus obtains a homeomorphism /4,5 between two open sets in R”
via the commutative diagram:

Uy
b/ N\
h

U;, o hy(Uyp) ——— hp(Uyp) < Up.
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Thus hyp= hgo hy' on the domain where the mapping is defined (the
reader should draw a figure). This mapping gives a relation between
the coordinates in the two charts and is called a change of coordinates,
or coordinate transformation. Sometimes, particularly in the case of
charts, it is useful to include the domain of a mapping in the notation;
thus, we write (4, U) for the mapping h: U — U’.

Definition 1.3: An atlas defined on a manifold is said to be differentiable
if all of its coordinate changes are differentiable mappings. For
simplicity, unless otherwise stated, we shall always mean differentiable
mappings of class C* on R” (the derivatives of all orders exist and are
continuous). Obviously, for all coordinate transformations one has (on
the domains for which the mappings are defined):

hyy = identity and hg, © hyp= hy,, so that hyj = hg,,

and hence the inverses of the coordinate transformations are also
differentiable. They are thus diffeomorphisms.

If «is a differentiable atlas defined on a manifold M, then the atlas
%(+) contains those charts for which all coordinate changes among
charts from .« are differentiable. The atlas Z(«) is then also differ-
entiable since, locally, a coordinate change /g, in % (<) can be written
as a composition hg,= h,,° hg, of two other coordinate changes with a
chart 4, € # and differentiability is a local property. The atlas 7 (#) is
clearly maximal. In other words, Z(#) cannot be enlarged by the
addition of further charts, and is the largest atlas which contains .«
Thus, every differentiable atlas ./ determines uniquely a maximal
differentiable atlas %(«#) such that &< % (). Furthermore, .”/(9/)—
2(%) if and only if the atlas.«/ U Z is differentiable.

Definition 1.4: A differentiable structure on a topological manifold is a
maximal differentiable atlas. A differentiable manifold is a topological
manifold, together with a differentiable structure.

In order to define a differentiable structure on a manifold, one must
specify a differentiable atlas. In general, one specifies as small an atlas
as possible, rather than a maximal one, which is then obtained as
described above. We shall tacitly assume that all the charts and atlases
of a manifold having a differentiable structure & are contained in Z. As
a shorthand notation, we write M, rather than (M, %) to denote a
differentiable manifold.

Examples: (a) M=R" The atlas is formed by the single chart:
(R”, identity). (b) Any open subset of a differentiable manifold has an
obvious differentiable structure. It may have others as well.

Definition 1.5: A continuous mapping ¢: M — N from one differ-
entiable manifold to another is said to be differentiable at the point



