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Preface

These notes were the subject of lectures given at Kent State University
during the 1973-74 academic year. At that time, it was already clear that
the geometry of Banach spaces (in the form of convexity and smoothness type
considerations) would play a central role in the theory of Radon-Nikodym
differentiation for vector-valued measures. This was the object of the
course: to acquaint my students (and, to a large extent, myself) with
the geometry of Banach spaces. Naturally, the logical finish to the
courses was a discussion of the Radon-Nikodym theorem viewed from a
purely geometric perspective.

Some words about the organization of the notes.

The first chapéer deals with the plenitude of support functionals to
closed bounded convex subsets of a Banach space. Two results are focal:
the Bishop-Phelps subreflexivity theorem gnd James' characterization of
weak compactness. I feel that these are among the deepest results of
modern functional analysis and have tried throughout the notes to apply
them whenever possible. When the Deity allowed for theorems like these to
be proved, He meant for them to be used! This chapter is closed with an
application to operators attaining their norm which uses the theory to
topological tensor products for its proof; this is the only excursion
concerning prerequisites outside of elementary functional.analysis and is
a one-time affair. The principle purpose here is to highlight the severe
restriction placed upon a Banach space (or pair of Banach spaces) that every
operator attain its norm; it also is an interesting application of James'
theorem.

Chapter Two deals with the basics of convexity and smoothness. It

provides an excellent collection of applications of both principles set



forth in the Ffirst chapter. This chapter's topics are classical (except
for the use of the aforementioned principles) with the possible exception
of the last section on normal structure.

Chapter Three.contains some of the most beautiful results in all
these notes; the theory of series in uniformly convexifiable spaces 1s
developed. Much here is left unsaid, of course, but an effort has been
made to present the basic results. One truly major omission is the theory
of superreflexive Banach spaces; actually, the exclusion of a discussion
of superreflexivity is due to the simple fact that I did not have time to
discuss it in the lectures.

The first discussion of what might be called the isomorphic theory of
the geometry of Banach spaces is contained in Chapter Four where the classical
renorming theorems are presented. The theory of renorming goes back to the
days of Clarkson though real applications of the theory awaited the develop-
ment of infinite dimensional topology. Nonetheless, the pioneers of the
area proved some beautiful (and useful) results on changing norms.

The theory of weakly compactly generated Banach spaces is taken up in
Chapter Five. Again, these lectures were aimed at students of vector-valued
measures; a fundamental fact-of;life in vector measures is that every
vector measure has its range in a weakly compactly generated Banach space.
Of course, the hand of Lindenstrauss is heavily felt in this chapter (as
it is throughout these notes). I have tried to give the central results of
weakly compactly generated Banach spaces as they were at the time of the
course., There have been a few developments since the course but the notes
on this section are fairly up to date. ’

As remarked before, Chapter Six is concerned with the Radon-Nikod&m
theorem for vector valued measures. Most of the material of this chapter is
quite recent (the same could ve said for Chapter Five). Our presentation
is geometric and founded on the Davis-Huff-Maynard-Phelps-Rieffel charac-

terization of spaces with the Radon-Nikodjm property. We have touched

vy o

only on the geometric aspects of the Radon-Nikodjm theorem; a much more

comprehensive discussion (albeit from a different point of view) is

contained in the forthcoming monograph, 'Vector Measures" by J. J. Uhl, Jr.

and myself.

As is to be expected, I have penefitted from discussions with a

number of mathematiclans. Particularly great is my debt of gratitude

to Professors Bill Davis, Tadeusz Figiel and Bill Johnson of Ohio State

University, Professors Bob Huff and Peter Morris of Pennsylvania State

University, Professor Bob Phelps of the University of Washington and

professors Johnnie Baker and Bob Lohman of Kent State University. Much

erstanding of the material in these notes came from reflecting

of my und
on the results contained herein in light of discussions with these people.

They have provided me with preprints of their work as well as elegant

proofs of several, previously cumbersome, theorems.
I also owe a great deal %o the students who sat through the elass in

which this material was presented. They cleared up many jnaccuracies and

forced me to clarify some very mddy arguments. particularly, I extend

thanks to Dr. Barbara Faires and Mr. Terry Morrison.

Thanks also go to Mr. J. Tischer for careful reading of much of the

finished manuscript and for a number of elegant arguments, now incorporated

in the notes, replacing some rather cumbersome constructions.

Finally, sincerest thanks go to the most crucial link in the

preparation of these notes: the Kent State University Mathematics

Department. secretaries, Julia Froble and Darlene May. Their patience with

my poor nandwriting and frequent cajoling was unbelievable.
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THROUGHOUT THESE NOTES ALL OUR BANACH SPACES ARE ASSUMEb TO BE
REAL BANACH SPACES, The reader will note that many of the proofs
hold with minor mo@ifications for the complex case as well. However,
several proofs require rather drastic surgery to be adapted to the
complex case; rather than take a chance with "a successful operation
in which the patient died", I have presented only the proofs for
real scalars feeling that here is where the intuition best serves

valid understanding of the geometric phenomena discussed.
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HH CHAPTER ONE

SUPPORT FUNCTIONALS FOR CLOSED BOUNDED CONVEX
SUBSETS OF A BANACH SPACE

This chapter contains two very deep results concerning support

o W

functionals for closed bounded convex subsets of a Banach space: the
P : ) Bishop-Phelps subreflexivity theorem and James' characterization of
weakly compact sets. They will form the cornerstone for the first part
I of these notes.

Let us establish some terminology.

Let X be a Banach space.

A convex set K € X is a convex cone if it is closed under positive

scalar multiples. Let € =X and XO € C; the convex cone X supports C
at x if K+ x N Ca={x].
-0 0 0
Note that if K is a convex cone with nonempty interior KO and
C is convex with X supporting C at XO’ then by the Hahn-Banach theorem

*
(separation form) there exists g € X such that sup g(C) < inf g(X + xo).

i Since x € CN K+ x , g(x ) = sup g(C).
0 0 0

So let £ € X with [|f] = 1 and let k 2 0. Define
K(f, k) = (x € X: ||¢| s xe(x));

K(f, k) is a closed convex cone,
If k > 1 then there exists x, € X with foH = 1 such that
1/k < f(xf). By comtinuity of £ and || || it follows that the interior

of XK(f, k) is nonempty.

Lemma 17 Suppose C is closed and convex; f € X* with Hf” = T; suppose
f is bounded on C and let k > 0.
If z € G, then there exists Xy € C such that Xy - 2 £ K(f, k) and

K(f, k) supports C at x,.




Proof:

Partially order C as follows:

x,yECsatisfnyyiffx-yEK(f, k)
iﬁ”x—y”skf&—y)=kf&)—kﬂw.

We will show (C, <) has a maximal element Xy 2 2. Let} = collection of
X 2 z and let W be a chain in 3; note that {f(w): w € E} is a bounded,
monotone real net hence converges to its leasti upper bound. 1In particular,
it is Cauchy, so W is a Cahucy set in the norm topology and hence
convergent to some X, € C. Continuity of f and ”“ now imply X, 63
and X is an upper bound for W.

Thus every chain has an upper bound and by Zorn's Lemma, 3 has

a maximal element X which is clearly = z.

To show K(f, k) SUpports C at x,, note that %, €CN [R(E, k) + xO].

In fact, % is the only point in this intersection. To see this, suppose

x€cn ke, x) + %,]. Then x - x) €K(f, k). As X € ¢, x. <% on the

0 =
other hand, z < xo and Xq <xso0z < x for each z € C . Thus ;SXO and
X = Xq a8 was claimed.
Lemma 2:” Suppose € > 0, Nell = llgll = 25 ana (= <1, £x) = 0 = gt < €/2)

then either [|f-g|| or |e+gl < e.

Proof:

Let h be such that h coincides with 8 on the kernel of f and
[t <e/2 (ahn-Banach). Then geh = 0 on kernel of f so g-h = «f for

Some . Note that

Fr- el ] = [llsl) - lls-bll] < u] < e/2.

Thus if o > 0 then

He-gll = -are-nfl < J1-af + n) <e.

3
If @ < 0 then
[i+el] = || (tad 0] < [14a] + {b) < €.
This completes the proof.
Lemma 3: If 0 <e¢ <1 and Hf“ = {lg“ =1and k> 1+ 2/, and g is non-

negative on K(f, k), then [f-gf| <.
Proof:
Let x € X be such that ||| = 1, £(x) > (1 + 2/e)/k. If y € X has |ly|lc 2/e,

and £(y) = 0, then ||xtyl] < 1 + 2/ < kf(x) = kf(xty) so xty € K(f, k).

Thus g(xty) = 0 and so |g(y)| <g@) <||x)| = 1. Now ||f4gl] <€ or
l£-8ll < e, by Lemma 2.

Claim: [[f+g{| < € is impossible. Note Hf” =1 so as 1/k, € < 1, there
is z € X with ”z” =1 and with £(z) > max (1/k, €). But then f(z) >

/x) |2 so z € K(f, k) so that g(z) = 0 and we have
l[ergll = (£re) () > €.

It follows that ”f—g” < €. ]

Theorem (Bishop-Phelps): Let C be a closed bounded convex set in the Banach

space X, then the collection of functionals that achieve their maximum

*
on C is dense in X .

Proof:

We can assume O € C and need only approximate those f € X* with
”f” =1, Let 0 < € <1 be given and choose k > 1 + 2/e > 1. Then
K(f, k) is a closed convex cone with ponempty interior. Now apply
Lemma 1 to C with z = 0 yielding X, € C with X € K(f, k) and
(K(f, k)+x0)ﬂ C = {xo} so K(f, k) supports C at Xy Now there

1s g €X (g #0) with llell =1 such that

sup g(C) = g(xy) = inf g(K(f, k) + x;)

inf g(K(£, k) + glx,).



In Aparticular, inf g(l((f. k)) 0 s0 g = 0 on K(f, k) and lemma 3 implies

.~ =0ur next results are due to R. C. James who has kindly furnished the
mathematicai public with relatively easy proofs of these beautiful and
deep facts. -

We start with
i

. *
lemma 4: Let 0 < 8 <1 and let (fn) € X with “fn“ = 1. Now suppose

l£ll = 6 for £ € co {e}. 1t A, >0and % A =1 then there is o with

8§ =@ =<1 and a sequence (gn) such that

() g, €eo £, £ ., -}

) flz A gl =

(iii) for each n, [(é)\ g”<c: [1-9 2 A ]
o+l i

Proof:

Choose (em) > 0 such that

A €
1) 5 ——>-" <1-8.
AP x)(E )
i=ntl i=n

We manufacture the sequence (gn) as follows.

Let

o = inf {|[g]: g € co (£)};

< <
clearly 6 < o = 1. Choose g € co(fn) such that ”glﬂ < a’l(l + 61).

Let
©
a, = inf{“)\l g+ (i§2 )‘i>g”: g € co(fz, f3, <))
clearly 8 < Cll < o, < 1. Choose gy € co(fz, f3, *°*) such that

”;\1g1 + (? ;\i)gZH <a, a+ €,).

Continuing in this fashion we obtain (gn) so that

gn € Co(fn, fn+1’

)

n-

i=1

whereaf = inf {“E )\ g +(2 )\)g”

i=1

We have now that § < cl

), (dn) so that 8 < ozHSan_'_ls 1 and
-1
2 e +(E APl <o @ +eD,
g € CO(fn, fn+1a ) )}'
ta={ 5 r g [=1. so (gn) satisfies (i)

n n n

and (ii). It remains to show that (gn) satisfies (iii).

We first establish that

3) "Z' A l|<[

holds for all n.

HZ) Xg“
i=1

(by (2))

1=

o |

dpe, (1+€,)
(Z2AME0)

@)

PR

2]
z Ay Eﬂ A
_ xigi+—m———lngnll
PO Sl 2 oA,
i=n 4 i=n b
® [-+}
A+ _E - A En Ay
isntl L F g+ — g |l
© (=1 i~1i n
o, P Ly
j=n * i=n a
x
k +1
|12xg+(2x)ll ~——l” lzlg“
m = i=n o, 7
i=n i=n
z Ay
Do (14e))+ —ﬂl———{lEkgH
oo, Zoay
ij=n * i=n
. Ao (L+e) n-1
( o aHRn + = Z re D
: itte 2 i=1
=n+l o oA, A, DAt
j=n > i=n+l * i=n



and we have (3) holding for all n.

Now apply equation (3) to ” Z‘H,\_j
' 3

." withn=mn -1 so

QL +e
HEAgH<(Z}A)(n1n1 S U e — ungll)
i=n (_EM(EH lel
yields =n-1 i=n i=n-1
1+e¢
12 sl < B aplsnt 25 ettt @ )
i=n+l
“+ (Ek)(z‘h) ( T 2T
i=n i=n+l i=n-1 i=n
1 n-2
Z : §1 8l
i=n-1 *

Now iterate again using n =n - 2 and get finally

HZ Mgl < ( 9 xi>§

el el (50D

)\kafk(l + € )

k
(by definition of o)

i=k * i=p41 1

it n A, (L +€)
<o T ,\i) SR by (1))
L (22 )
i=k i=k+1
Me
Su(EA)(E + (1 - 8))
L=ntl kl(Ex)(Zm
i=k i=k+l
= o( Z)lx>(2( ) + (1 - 8))
i=n+ k=1 2 )\i EK
i=k+1 i=k *
< o Z)ﬂx Y - +1-86) (since Enxn =1)
i=n 2 )\ n/\'n
i=n+1
=a( Z‘ A, )( - 98)
i=n+l 2 Y
i=n4l *

[ e pr—

R —

oo

= a(l - 8¢ Z) A
j=n+l T

Theorem 2 (James-Klee): Let X be a separable Banach space. TFAE:

(i) X is not reflexive

(i1) 1£ 0 <8 <1, then there exists (f) & X such that [[£ ]| <1

“fH = § whenever f € co (fn) and fn - 0 weak star.

(iii) if 0 < 8 <1 and )\n > 0 and Zn )\n =1, then there exists

*
o: 8 <o <1 and there exists (gn) ¢ X such that g, " 0 weak-star,

Iz A g| =« and for each n ”Zrll Ay giH so(l -8 Zn+1 A s

n n n

(iv) there exists f € ¥ not achieving its norm.

Proof:

Few
Let X be nonreflexive and choose F € X  such that ||FH < 1 and

d(F, X) > 8. Let (xn) be dense in X and recall Hellz's theorem:
* * *
[hl’ ey hn € Z; TIPS € scalars, then for there to exist for

*
each € > 0, z € Z such that ||z]| <M + € and hiz = ¢, it is necessary and

n n

sufficient that given scalars a;, ***, a_, | ?aici| < M| ?aihill
* %
So let h, = *1» h2 T Xy s hn—1 = Fphar hn =F
% *
Z= X, ey =y = v =cn=1=0, c = 8 (z = f € X).. Then we have:
8 .
|Z‘1alc1| = |an| ]cnl = lanle = \anlm dist (F,X)

n-1 a

[Z} i
s gD e + El a_ x|
8 n-1
" TerEo 1t 2l

*
There isf _; € X such that [|£ || <1 and such that £ ,(x;) =0

1<i=<n-1and F(f ,) = 6. Now (fn) is such that fn(x)—~ 0 for x € X

n-1



k § / ' - for each w € L(gn), “En )\n(gn - V)“ =
= = = = >
and if £ € co(f), f = ? B £, 0 F(f) =28 F(E) = 8= (g 26, Thus Eg »
@) = (i) - for each w € L(gn) and each n,
(ii) = (iii) follows easily from Lemma 4. ¢ n ©
- i [Z 2 (g -] < @-8(Z A
(iii) = ({1iv)) gop 104 ol

*
Claim: Given everything as in (iii) then ):n )‘n gn € X does not attain its

Proof:

norm. In fact, let x € X, Hx” < 1. Then gn(x)-é(). Choose n such that Choose e, > 0 such that

m2n+1=>gm(x) < af. Then

A€
n @ By o n <1 - 8.
I8, 00 < Thg ) +ad T ! @ T - _
i=1 i=n+1 - (2 )\i)( I )\i)
n s ntl n
SZ aell+ae D A
i=1 © b i=n#l 1 ©
@ :
<a(l-06 L A)+a8 T A =a Let (§;77) = (£;). Define
i=n+l 1 i=ntl i s .
(iv) = (i). Suppose X is reflexive and ¢ € X, then there is F € X such that
@ = inf {sup{llg - w]|: w € L(‘Pi)}}:
”F” =1 and Hcp” = F(p). But X reflexive = there is x € X, ”x” = 1 such that
* * .
g0 = x(g) = Flg) for g € X ) 50 @) = Flp) = ”(P” and each £ € X where the infimum is taken over those g € co(fn) and those sequences
o _ L . £
attains its norm o ((Pi) satisfying g € colfy, s ) for each k. Choose g; € co(£))
Our next task is to extend the above result to the non-separable ) 1) . .
and a sequence (cp,(l)) such that for each k ‘PlE € colfy, £ .45 ) with
case. For this a bit more work is required. We start with some ‘ *
* o S supi”g -l we L((p.(l))} <a +ep).
Notation: Let (an) be bounded in X, X a Banach space). Denote by L((pn) ; 1 1 1
% i
: 1
those w € X such that Now choose w' € L(C{Jé )) so that
lim ¢ (x) < w(x) < 1im x) for x € X. (
— n- P € : a(l—e)<Hg'W'H<°1(1+€1)'
! 1 1 1
Remark: L(p ) # #. Consider the map X — £ given by x ~ (P _(x)). ; _
" " : Let x € X, H;” < 1 be such that
* . . —_ N _
Let g € L be a Banach limit, then lim ‘Pn(x) < 2(x) < lim (Pn(x) E-, al a- e]_) < (gl W E.

*
Lemma 5: Let X be any Banach space, 0 <6 <1, (£)cx lell<1.
n n Then as
Suppose that |f - w2 8 for any £ € co(fn) and any w € L(fn) and that

lim @i(l)&) <w' ()
A >0 with & )\n = 1. Then there exists o such that 6 <&@ < 2 and
n n

1
(1)) of (‘Pi(l)) such that for any w € L(‘Ifé ))

(g ) c X* such that {} gnﬂ <1 with the following properties there is a subsequence (’l’i
n




7 1) 3 = w@ <w' G-

= inf {sup{[r; 81 2P (%; A e - wl|:w € L(p,)}}

infimum is taken over all g € co(Wél), wgl), ***) and all

. 1
7(¢i) such that @ € CO(Wé )’ wéi{’ vocl).  (GHEEEE
il 1
w00y 437, ) and ) sueh thar 4 P€ oL, 4 ),

Qgiéli k and

Next choose w' € L(w‘z)) such that
1
a, (1 - <
p - e) <y gy + (?Ki)gz -w'll <e, @+ey
and let x € X, “;“ < 1 be such that
@1 - e)) < g &) +§xi g - w'®).

As above select a subsequence (¢§2)) of (¢(2)

i ) such that for

w € L(wfz)) we have

; @) = = 1; 2) — = —
lim, @77 () = lim, tffi( Ve v® = w' (%)
and again we can replace w' by w above.

Continuing in this fashion we let

n-1 &
(2) = inf Bz
@ =in {sup{]| = Ay o8y + (z}xi)g - w: we L(@i)}}’

> - 2
0, < sup {[r; g + (The, - wl: v € LG} <@, @ + ey

SN

where the infimum is taken over those g € co(y

(n-l)’ wsn-l)’ se

n +1
and those sequences (@i) satisfying P € co(wén-l), ¢é:i1), S oY
all k. Choose gy & co(¢én‘1), wéiil), *+* ) and a sequence (@in))
(n-1) (n-1)

Ko Vg o ) wiem

such that @én) € co (¥

n-1 ®
() o = sup {H'Zi A gt (%?ki)gn -wl|l: w € L(win))} < an(l + en).
=
Then choose w' € L(@fn)) so that
s1

n @
o(n(1 h €n) B H;Ea xi gi + (%3 Ki)gn - W'H < o!n(l W en)'

Let x € X, HEH < 1 be selected so that

,n=1 _ @ _ _
@ x@-e)< E} A g @)+ (D) g G - ).
Using

Lin o™ @ = v @

obtain a subsequence (wfn)) of ($£n)) such that for each w € L(Qén))

we get

Lim, ;pi(“) @) = lim, wi(“) @ =wvx <w' .

This allows us to replace w' in (4) by We

This completes the construction.

(n)) for each i, (3) and the replacement

By the fact that L(gn) = L(:pi

of w' by w in (4) we get for each n that

n-1 @
(5) a (1-€)< H:‘El A gt (%;)\i)gn - < A +e)

for any w € L(gn)~

Note that HgnH <1 for all n. Thus g € co(gn) implies Hg” <1l. As



‘

”w“ <1 forw€ L(gn) we have o = 2. From (2) one easily derives that
o t. Of course, an = g by construction and the hypotheses of the

lemma. We have then that o = 1imn @ exists and satisfies (look at (5)),

1
g<o-= H%}?\n(gn -w| = 2.

Thus we only have the estimate on ” i)‘i(gi - w)” to establish. But
i=1

the establishment of this is obtained directly as in Lemma 4 substituting

g.

;T v for gi throughout. Finis.

Theorem 3 (James): Let X be a Banach space. TFAE:

(i) X is non-reflexive;

(i1) 1if 0 < g < 1 then there is a sequence (fn) < X*, ”fnn <1
and a subspace X, of X such that [|£ - wl| =6 for all £ € co (£)) and
for any w € Xs and such that fn x) -0 for each x € Xo;

(iii) if0<g<1and) 20 with Z A, = 1 then there exists an
n

*
o g <a <2 and (gn) C X with ”gnH < 1 such that for w € L(gn) we have

1
122, e, - ]

=
and
n @
i Bxi(gi -wl<e @ -e(Z A
L i
i=1 ntl
) . *
(iv) there exists £ € X which does not achieve its norm.
Proof:

(1) implies (ii). Let XO be a non-reflexive separable subspace of X.
Apply Theorem 2 to X0 to obtain a sequence (fn) c X* “f ” < 1 with
n
fn(x) 0 for each x € XO and such that HfHX =@ for all f € co (fn).

0
Now, for f € co (fn)’ w € XS

e - wll = - wHXO = HfllXO z 8.

(ii) implies (iii) is immediate from Lemma 5.

13
(iii) implies (iv). Let (A ) be chosen such that )\n > 0 and
n
Zn )\n = 1 and such that there is A > 0 with 0 < A < 92/2 and
< . < _ .
)\n+1 AO‘n)’ holding for all n. Assertion: Zn )\n(gn w) does not achieve
its norm for any w € L(gn). In fact, if x € X has Hx” < 1 then

lim 8 (x) < w(x) for all w € L(gn). As § < @ we must have n such that
(.., - w)(x) < 8% - 20 <20 - 28
n+l - :

But then

Mo

Ty ey - W@ < XA (g - W) + @0 - 201,

]

i=1

+ 2 A (g =W
nt2 00

n
< ”31 Maey - D+ (g - 201,
+2 2 2,
nt2

ol - 8) 2 A, + (@8 - 20D + 20 2\,
it a+l ntl *

IA

=a- (@ -20) 2 A, <a.
n+2 1

But @ is the norm of Tn )‘n(gn - w). This completes the proof of this

implication and since (iv) implies (i) is same as in Theorem 2 effectively

finishes the proof of this theorem.

Theorem 4: Let B be a separable, bounded, weakly closed subset of the
quasi-complete locally convex space X.
TFAE:

(i) B is not weakly compact;

(ii) there exists ® > 0 and an equicontinuous sequence (fn) in X?‘r
such that s, (f) = sup {|{£®)]: b € B} = ¢ for all £ € co(f ) and

£ (b) = 0 for all b € B;
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(iii) there exists 8 > 0 such that if Xn > 0 and En An = 1 then for
*
some @ 2 § and some equicontinuous (gn) C X we have gn(b) ~ 0 for each

@© «©
= < - i
b €Band s (f A g)=«and SB(;E& A B <@ -8 (gfi 1)) holding

for all nj

(iv) there exists g € X* which does not achieve its supremum on B,

(i) implies (ii). Recall that if X is a locally convex space then
there exists a family {Xy: v € I'} of Banach spaces Xy such that X is a
subspace of HF Xy. X is quasi complete and B is bounded so EG(B) is
closed and bounded in X hence in HF Xy. By Mazur's theorem co B is
weakly closed in HTX& and B is weakly closed in co B so B is weakly
closed in ery. Note that Hy B = ¥th projection of B is separable,

If B were not weakly compact then one of the [ B's would

~

bounded in X .
Y
be non-weakly compact. Thus we have reduced our considerations to X

being a Banach space and of course we can assume that the closed linear

span of B is all of X so we are in situation of X being separable.

*
Consider the functional Sy defined on X by
sB(f) = sup {lf(b)l: b € B}.

When we refer to X* in the Sy topology we will call it C. Consider B in
the weak topology g (X, x*) and in the o(C*, C)~topology (B is a subset
of the dual C* of the normed linear space C). We note that (B, o (X, X*))
and (B, G(C*, C)) coincide.

%*
Consider x € B as a functional in C . Then
[x(B] = |£)| < s ()

*
) Hx” % = 1. Thus B ¢ closed unit ball of C'. But the closed unit ball

* * * %
of ¢ is g(C , C) compact by Alaoglu's theorem. Thus if XN C = C , B

would be weakly compact since it is a closed subset of the unit ball of

15

* * *
C in the topology g(C , C) (which coincides with the o (X, X ) topology
on B). Hence as we've assumed B is not weakly compact it must be so
. * *
that XN ¢C i c.

*
Thus there is anm € C X. Let M = sup {||x

It x € B}, |]n|| be the norm

) *
of nin X and ”ﬂ” 4 be the norm of 1 in C . Observe that

Kk
“n” < MHnH - Now X is complete and is closed in X so distance
C
(M, X) = 24 > 0. Let (xn) be dense in X, and select a sequence
*

el = = = ear = =
() X such that ||£ [| <1, nf_= 4, £.(p) = £ (xy) £(x)=0
as in proof of (i) implies (ii) in Theorem 2. The sequence (fn) is
uniformly bounded hence equicontinuous and clearly satisfies all else

required of them including

)= =
B S

c

for all £ € co(fn) since m(f) = A for all f € co(fn).
The rest of the implications of the theorem are performed formally

as in Theorem 1 and are not repeated herein.

Utilizing the fact that weakly compact and countably compact sets coincide in

quasi-complete locally convex spaces to reduce the general case to the

separable case, one can easily derive as well the following:

Theorem 5 (James): Let B be a weakly closed, bounded subset of the quasi-
complete locally convex space X. TFAE:
(1) B is non weakly compéct;
(ii) there exists a § > 0, a subset BO of B and an equicontinuous

*
sequence (fn) of members of X for which

SB(f -w) =8

L i = .
for all £ € co(fn) and w € BO and 11mn fn(x) = 0 for all x € BO’

(iii) there is § > O such that if (An) is a sequence of positive numbers

with Zn Xn = 1 then there is & > 0 and a equicontinuous sequence (gn) of



16

*
members of X for which given n and w € L(gﬂ) we have

Mo

A (g - W) <o - 6(2 A0);

s, (& A (g -w)) =a, si(
B¥n "o Tn B bl

i=1
(iv) there exists a continuous linear functional on X which does

not attain its supremum on B.

An application of James' theorem: We present, as an illustration

of James' characterization of reflexivity, the following result of

J. Holub (see also [14]):

Theorem 6: Let X, Y be reflexive Banach spaces one of which possesses

the approkimation property. TFAE:
(i) ;f(X; Y) is reflexive;
(ii) every linear continuous operator T: X — Y is compact;
(iii) every linear continuous operator T: X ~ Y achieves its norm,
i.e., for any linear continuous operator T: X =Y there is an x € X,

ll<]| 1 such that ||zx|| = |[7].

Proof:

We denote by K)X; Y), I(X; Y), N(X; Y) the compact, integral and
nuclear linear operators from X to Y. By reflexivity, the possession by
X( or Y) of the approximation property insures the possession of this
property by the dual space X* (respectively, Y*). In either case we
have the identification K(X; Y) = x* é'Y (injective .tensor product).

By duality we get
* * * * %
KE ¥) =X )= I(X; Y).
k%
By reflexivity of X, Y (actually we only need one of these to be
reflexive at this point) and the Dunford-Pettis-Phillips Theorem
* % * %
IX; ¥Y)=NE; Y).

* * : :
Now X or Y has the approximation property and is reflexive; therefore,
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as any dual space possessing the so-called Radon-Nikodym property--
reflexive spaces do possess this property as we shall see later--and
the approximation properﬁy possesses the metric approximation property,

%*
we get that X or Y possesses the metric approximation property. Thus,

* % % A %
N(X ;Y¥Y)=X ®Y (projective tensor product)

A
X®yY .,

Thus,
® Ak
KX, ¥) =X®Y.

Finally, by the Universal Mapping Principle,

* %

G8YH = £ @Y™

X (X; Y).

The resulting equivalence of (i) and (ii) is now clear.

Suppose now that (ii) holds; let T: X - Y be a linear continuous
operator, i.e., by (ii) T is a compact linear operator. Then there
exists (x ) C X, ”an < 1 such that ”Tan - |ITff. X's reflexivity implies

the existence of a subsequence of (Xn)——say (xnk)—-such that X converges

weakly to some Xg. Note ”XOH < 1. Also T is compact hence completely
continuous (i.e., T maps weakly convergent sequences into norm
convergent sequences). Thus (Txn ) is a norm convergent sequence in Y;

in fact, note that Tx - Txo in norm. Thus
I = 1im IITxnkll = flzx,ll,

(iii) follows.
Now suppose that each linear continuous operator T: X — Y achieves its
A K K
norm. Keep in mind that LX; ¥) = X®Y ) . We will show that each
A Kk *
linear continuous operator T, viewed as a member of (X® Y ) , achieves
~ K A Kk
its norm. Thus (X ® Y ) is reflexive and, therefore, (X& Y ) =L (X; Y)

is also reflexive.



