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Chapter 1

Introduction

Electric power systems are among the largest structural achievements of
man. Some transcend international boundaries, but others supply the local
needs of a ship or an aeroplane. The generators within an interconnected
power system usually produce alternating current, and are synchronized to
operate at the same frequency. In a synchronized system, the power is
naturally shared between generators in the ratio of the rating of the
generators, but this can be modified by the operator. Systems, which operate
at different frequencies, can also be interconnected, either through a
frequency converter or through a direct current tie. A direct current tie is
also used between systems that, while operating at the same nominal
frequency, have difficulty in remaining in synchronism if interconnected.

Alternating current generators remain in synchronism because of the self-
regulating properties of their interconnection. If one machine deviates from
its synchronous speed, power is transferred from the other generators in the
system in such a way as to reduce the speed deviation. The moments of
inertia of the generators also come into play, and result in the speed
overcorrecting in an analogous manner to a pendulum swinging about its
equilibrium; the pendulum inertia is equivalent to the generator inertia, and
the torque on the pendulum due to gravity is equivalent to the synchronizing
torque between the generators in the power system. However, generators are
much more complicated dynamic devices than are pendulums, and one must
not be tempted to put too much emphasis on this analogy. However, it is true
to say that power system oscillations are as natural as those of pendulums.



An interconnected power system cannot operate without control. This is
effected by a combination of manual operator controls and automatic
controls. The operators control the power that the generator supplies under
normal operating conditions, and the automatic controls come into play to
make the fast adjustments necessary to maintain the system voltage and
frequency within design limits following sudden changes in the system.
Thus, most generators have speed governing systems which automatically
adjust the prime mover driving the generator so as to keep the generator
speed constant, and voltage regulating systems which adjust the generators'
excitation to maintain the generator voltages constant. These controls are
necessary for any interconnected power system to supply power of the
quality demanded by today's electric power users. However, most automatic
controls use high gain negative feedback, which, by its active nature, can
cause oscillations to grow in amplitude with time. The automatic controls in
power systems must, as with other automatic feedback controls, be designed
so that oscillations decay rather than grow.

This then brings us to the reason for this book. It is to discuss

e the nature of power system oscillations

e the mathematical analysis techniques necessary to predict system
performance

e control methods to ensure that oscillations decay with time

Oscillations were observed in power systems as soon as synchronous
generators were interconnected to provide more power capacity and more
reliability. Originally, the interconnected generators were fairly close to one
another, and oscillations were at frequencies of the order of 1 to 2 Hz.
Amortiseur (damper) windings on the generator rotor were used to prevent
the oscillations amplitudes increasing. Damper windings act like the squirrel
cage winding of an induction motor and produce a torque proportional to the
speed deviation of the rotor from synchronous speed. They absorb the
energy associated with the system oscillations and so cause their amplitudes
to reduce.

As power system reliability became increasingly important, the
requirement for a system to be able to recover from a faults cleared by relay
action was added to the system design specifications. Rapid automatic
voltage control was used to prevent the system's generators loosing
synchronism following a system fault. Fast excitation systems, however,
tend to reduce the damping of system oscillations. Originally, the
oscillations most affected were those between electrically closely coupled
generators. Special stabilizing controls (Power System Stabilizers) were
designed to damp these oscillations.

In the 1950s and 1960s, electric power utilities found that they could
achieve more reliability and economy by interconnecting to other utilities,
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often through quite long transmission lines. In some cases, when the utilities
connected, low frequency growing oscillations prevented the interconnection
from being retained [1]. In some instances, lowering automatic voltage
regulator gains was all that was necessary to make the system
interconnection successful. However, in other cases the interconnection
plans were abandoned until asynchronous HVDC interconnections were
technically possible. AC tie lines became more stressed, and low frequency
oscillations between some interconnected systems were found to increase in
magnitude. In the worst cases, these oscillations caused the interconnection
to be lost with consequent inability to supply customer load.

From an operating point of view, oscillations are acceptable as long as
they decay. However, oscillations are a characteristic of the system; they are
initiated by the normal small changes in the systems load. There is no
warning to the operator if a new operating condition causes an oscillation to
increase in magnitude. An increase in tie line flow of as little as 10 MW may
make the difference between decaying oscillations which are acceptable and
increasing oscillations which have the potential to cause system collapse.
Of course, a major disturbance may finally result in growing oscillations and
system collapse. Such was the case in the August 1996 collapse of the
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western US/Canada interconnected system. The progress of this collapse was
recorded by the extensive monitoring system, which has been installed [2],
and its cause is explained clearly in [3]. A record of the power flow in a
major transmission line is shown in Figure 1. The recording starts well
before the incident, which triggered the system's collapse, and continues
until the line is disconnected. Details of this record in Figure 2 and 3 show
the response of the system to the initial fault, and to subsequent smaller
disturbances. The system oscillates at about 0.26 Hz and the oscillations
decay. Such oscillations, which may last for 30 s, are not noticeable by the
system's operators unless they have special instrumentation that detects
them. The final collapse was caused by the growing oscillations shown in
Figure 4. The decaying oscillations of figures 2 an 3 were turned into
growing oscillations by the sequence of faults and protective relay
operations. The amplitude of the oscillations eventually caused the system to
split into a number of disconnected regions, with the loss of power to a
considerable number of customers.
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