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Preface

The modern theory of Sequential Analysis came into existence simultaneously
in the United States and Great Britain in response to demands for more
efficient sampling inspection procedures during World War I1. The develop-
ments were admirably summarized by their principal architect, A. Wald, in
his book Sequential Analysis (1947).

In spite of the extraordinary accomplishments of this period, there remained
some dissatisfaction with the sequential probability ratio test and Wald’s
analysis of it. (i) The open-ended continuation region with the concomitant
possibility of taking an arbitrarily large number of observations seems intol-
erable in practice. (i) Wald’s elegant approximations based on “neglecting the
excess” of the log likelihood ratio over the stopping boundaries are not
especially accurate and do not allow one to study the effect of taking observa-
tions in groups rather than one at a time. (iii) The beautiful optimality property
of the sequential probability ratio test applies only to the artificial problem
of testing a simple hypothesis against a simple alternative.

In response to these issues and to new motivation from the direction of
controlled clinical trials numerous modifications of the sequential probability
ratio test were proposed and their properties studied—often by simulation or
lengthy numerical computation. (A notable exception is Anderson, 1960; see
[11.7.) In the past decade it has become possible to give a more complete
theoretical analysis of many of the proposals and hence to understand them
better.

The primary goal of this book is to review these recent developments for
the most part in the specific framework of Wald’s book, i.e., sequential hypoth-
esis testing in a non-Bayesian, non-decision-theoretic context. In contrast to
the sequential probability ratio test, the emphasis is on closed (truncated)
sequential tests defined by non-linear stopping boundaries and often applied
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to grouped data. In particular the repeated significance tests of Armitage
(1975) and the group repeated significance tests of Pocock (1977) are given an
extensive theoretical treatment. To the extent that there is a unifying theme
to the book, it is an attempt to understand repeated significance tests theoret-
ically, to criticize them, and to suggest some improvements as a response to
this criticism.

A secondary goal is to redress to some extent the imbalance in the literature
of sequential analysis between considerations of experimental design and
considerations of statistical inference. Here the term “experimental design”
refers to selection of an experiment, hence to selection of the data to be
observed, from a set of possibilities. Since choosing a sequential test includes
the problem of choosing a stopping rule, it should properly be considered an
aspect of experimental design.

Inferential summaries of the data actually obtained in an experiment in-
clude attained significance levels (p-values) and confidence intervals, which
play important roles in fixed sample statistics, but until recently have been
almost totally ignored in discussions of sequential analysis. Chapters I11 and
IV examine these concepts, which turn out to have certain implications for
the selection of a stopping rule, hence for the experimental design itself.

Some additional subjects which can be studied by the methods developed
toinvestigate truncated sequential tests are discussed briefly. Thus cusum tests
are introduced in Chapter 11 and a simple approximation for their average
run length is given in Chapter X. However, they are not systematically
compared with other competing possibilities for detecting a change of distri-
bution. Fixed precision confidence intervals receive a similar cursory treat-
ment in Chapter VII.

I have attempted to make this book more widely accessible than most of
the literature on which it is based by delaying as long as possible the introduc-
tion of “heavy” mathematics. Chapters I-VII emphasize the statistical ideas
accompanied by enough of the mathematical development that the reader can
regard himself as a participant rather than a spectator observing the opening
of a black box. The proofs of many results are delayed until after their
significance and application have been discussed; in fact most proofs fall short
of the currently accepted mathematical standard. Woodroofe (1982) has given
a more precise and extensive development of the mathematical theory.

The requirements of exposition have led to numerous compromises. The
most significant is the use of Brownian motion in Chapters I-VI to provide
basic qualitative insight. The corresponding discrete time results are stated
so that they can be used for numerical calculations, but their generally more
difficult justification is then deferred. Consequently the mathematical methods
have been chosen to a certain extent because they provide a unified treatment
for the range of problems considered, linear and non-linear in discrete and
continuous time. In many cases this meant not using what appears to be the
“best” method for a particular problem. For example, the methods pioneered
by Woodroofe, which often seem to deliver the best result in discrete time,
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have not been developed completely; and the purely continuous time methods
of Jennen and Lerche (1981, 1982) are not discussed at all.

Finally it should be noted that the book is primarily concerned with very
simple models —especially those involving the normal distribution. There
exists an extensive literature devoted to approximating more complex models
by simple ones. A notable early contribution is due to Cox (1963). See also
Hall and Loynes (1977) and Sen (1982). Digressions illustrating the nature of
such approximations appear in I11.9 and again in V.5, which is concerned with
the log rank test of survival analysis.

[ would like to thank a number of people who have directly or indirectly
contributed to this project. Herbert Robbins introduced me to the subject of
Sequential Analysis and has been a constant source of intellectual guidance
and inspiration. T. L. Lai worked with me on two papers which form the
mathematical foundation of the presentation given here. Michael Wood-
roofe’s research, beginning with his brilliant 1976 paper, has been a rich source
of ideas and a stimulus to me to improve mine. In addition I want to thank
Michael Hogan, Steve Lalley, and Thomas Sellke for many helpful discussions
and technical assistance during the past several years. Some of their speci-
fic contributions are mentioned in the bibliographical notes. I thank Peter
Elderon and Inchi Hu for proofreading and helpful suggestions on exposition.
Thanks are also due to Jerri Rudnick and Judi Davis for their superb typing
and cheerful retyping. And finally [ want to thank the Office of Naval Research
and the National Science Foundation for their support of my research.

Stanford, California David Siegmund
May, 1985
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CHAPTER 1

Introduction and Examples

In very general terms there are two reasons for introducing sequential methods
into statistical analysis. One is to solve more efficiently a problem which has a
fixed sample solution. The other is to deal with problems for which no fixed
sample solution exists. It is the first category which is the primary concern of
this book, but we begin here with a few comments about the second.

Some problems are intrinsically sequential and cannot be discussed without
considering their sequential aspects. An important example is a control system
with unknown dynamics, about which something can be learned as the system
operates. Dynamic programming is one method for dealing with problems of
this sort. A beautiful recent summary is given by Whittle (1982, 1983).

Another intrinsically sequential problem is the fixed precision estimation of
a parameter in the presence of an unknown nuisance parameter. It is almost
obvious that one cannot give a confidence interval of prescribed length for the
mean of a normal distribution based on a sample of some fixed size n if one
does not know the variance of the distribution. (See Dantzig, 1940, for a formal
proof.) However, by taking data sequentially one can use the data to estimate
the variance and the estimated variance to determine a (random) sample size
which will permit the mean to be estimated by a fixed length confidence
interval. See Stein (1945) and Chapter VIIL. (In spite of its apparent omnipo-
tence the method of dynamic programming appears not to have been applied
to this problem.)

The principal subject of this book is sequential hypothesis testing and
related problems of estimation. In contrast to the preceding examples, for most
of the problems studied in detail there exist fixed sample solutions, and the
reason for introducing sequential methods is to provide greater efficiency in
some sense to be defined. Many of the problems might be attacked by dynamic
programming. In fact, dynamic programming is a far reaching generalization
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of the method originally developed in the pioneering papers of Wald (1947b),
Wald and Wolfowitz (1948), and perhaps most importantly Arrow et al. (1949)
to find Bayes solutions to problems of sequential hypothesis testing. Neverthe-
less, because we shall be primarily concerned with problems having vaguely
specified loss functions, for the most part we shall ignore the possibility of
finding optimal solutions and concentrate instead on procedures which can be
directly compared with and improve upon those used most often in practice, to
wit fixed sample size procedures evaluated in the classical terms of significance
level, power, and sample size.

The simplest sequential test is a so-called curtailed test. Suppose that a
machine produces items which may be judged good or defective, and we wish
to infer on the basis of a random sample whether the proportion of defectives
in a large batch of items exceeds some value p,. Assume that the inference will
be based on the number S,, of defectives in a random sample of size m. If mis a
small proportion of the batch size, then S,, has approximately a binomial
distribution with mean mp, where p is the true proportion of defectives in the
batch; and a reasonable rule to test the hypothesis Hy: p < p, against H,: p >
po is to reject Hy if S,, > r for some constant r, which at the moment need not
be specified more precisely. If the sample is drawn sequentially and for some
value k less than m the value of S, already equals r, one could stop sampling
immediately and reject Hy. More formally, let T denote the smallest value of k
for which S, = r and put T' = min(T, m). Consider the procedure which stops
sampling at the random time T" and decides that p > p,ifand only if T < m. If
one considers these two procedures as tests of H, against H,, their rejection
regions, to wit {T < m} and {S,, > r}, are the same events, and hence the two
tests have the same power function. Since the test which stops at the random
time T’ never takes more observations and may take fewer than the fixed
sample test, it has a reasonable claim to be regarded as more efficient.

The preceding discussion has the appearance of delivering a positive benefit
at no cost. However, the situation is not so clear if a second consideration is
also to estimate p, say by means of a confidence interval. To continue the
discussion with a slightly different example, suppose that X(¢), t >0, is a
Poisson process with mean value iz, and we would like to test Hy: 4 < 4
against H,: A > 4,. This problem might be regarded as an approximation to
the preceding one, for if p is small the process of failures is approximately a
Poisson process. However, the Poisson formulation might also apply to a
reliability analysis of items having exponentially distributed lifetimes, which
(in the simplest experimental design) are put on test serially with each failed
item being immediately replaced with a good one. Then 4 is the reciprocal of
the mean time to failure of the items. It is clear from the discussion of the
preceding paragraph that instead of a fixed time test which observes X (¢) until
t =m and rejects H, whenever X(m) > r, one can curtail the test at the
stopping time T’ = min(7T,m), where T denotes the first time ¢ such that
X (t) = r, and reject H, whenever T < m.

Now consider the problem of giving an upper confidence bound for 4 (hence
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a lower confidence bound for the mean lifetime of an item). The standard fixed
sample (1 — ) x 1009, confidence bound is A%¥[ X (m)], where A%(n) is defined
as the unique solution of

(1.1) P,{X(m) < n} =
Since
(1.2) P.{X(t) < n} = Py{Wasy > t}

where w, is the waiting time for the nth event of the Poisson process, and since
Jw, has a gamma distribution with parameter n (chi-square distribution with
parameter 2n), the value of A3(n) is easily determined. For the curtailed test
having exactly the same power function as a given fixed sample test, the
corresponding confidence bound is slightly different. In analogy with (1.1) (see
also Problem 1.1) define 4%(¢) to be the solution of

(1.3) PAT >t} =

Then a (1 — a) x 100% upper confidence bound for 4 based on the data
(T, X(T")) 1s
4] LT X ()] = {;VT(T') if T<m

' ’ JE[X (m)] if T>m
(see Problem 1.2 for a proof). The relation (1.2) between X (t) and w, makes it
casy to determine Af(f).

Lower confidence bounds, A, [ X (m)] and 4, [T’, X(T')] may be similarly
defined. Confidence intervals may be obtained by combining upper and lower
confidence bounds in the usual way. It turns out that A, [T, X(T")] <
J42[ X (m)] with equality if and only if X(m) <r, so one price of curtailment
is a smaller lower confidence bound for 4.

The relation between A%[ X (m)] and A*[T’, X(T")] is not so simple.! Since
the Poisson distributions have monotone likelihood ratio, the confidence
bound A¥[ X (m)] for the fixed sample size m is optimal in the strong sense of
being uniformly most accurate (see Lehmann, 1959, p. 78ff. or Cox and
Hinkley, 1974, p. 213). Since the statistician who observes X (m) could by
sufficiency define a randomized upper confidence bound with exactly the same
coverage probability as (1.4), it follows that the fixed sample upper confidence
bound is uniformly more accurate than that defined by (1.4). Hence less
accuracy at the upper confidence bound is also a price of curtailment. (It is easy
to see that the distributions of (T”, X (T")) have monotone likelihood ratio and
hence that the upper confidence bound (1.4) is itself uniformly most accurate in
the class of procedures which depend on the sample path X (1) only until time
T’ (cf. Problem 1.7). We shall see that the method used to define (1.4) can be

! The material in this paragraph plays no role in what follows. It can be omitted by anyone not
already familiar with the relevant concepts.
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adapted to a variety of sequential tests, but it is very rare that the resulting
confidence bounds have an easily described optimal property.)

The preceding discussion illustrates qualitatively both the advantages
(smaller sample size) and the disadvantages (less accurate estimation) as-
sociated with a sequential test. In Chapters III and IV these tradeoffs are
studied quantitatively.

Remark 1.5. The reader interested in the foundations of statistics may find it
interesting to think about various violations of the likelihood principle (Cox
and Hinkley, 1974, p. 39) which occur in the sequel. One example is in the
definition of confidence bounds. For a Bayesian with a prior distribution for 4
which is uniform on (0, c0), an easy calculation shows that for any stopping
rule 7, A3 [ X ()] defined above isa 1 — « posterior probability upper bound for
A, 1e. P{A < AX[X(1)]|t, X(r)} = 1 — a. In particular, for the fixed sample
experiment the confidence and posterior probability bounds agree. But for the
sequential experiment, the particular stopping rule plays an important role in
the determination of a confidence bound with the effect that the “confidence”
of the posterior probability upper bound is strictly less than 1 — « (see also
Problem 1.5).

Although the methods described in the following chapters can be adapted to
the investigation of a wide variety of sequential procedures, the primary
concrete example studied in detail is the repeated significance test and some of
its modifications. Let x,, x,, ... be independent, normally distributed random
variables with unknown mean p and known variance o2, which without loss of
generality can be taken equal to 1. Let S, = x; + -+ + x,,. The standard fixed
sample .05 level significance test of H,: u = 0 against H,: u # Ois to reject H, if
and only if |S,| > 1.96n"2. Here n is the arbitrary, but fixed sample size of the
experiment. Suppose now that if H, is actually true it is desirable to discover
this fact after a minimum amount of experimentation, but no similar con-
straint exists under H,. Such might be the case in a clinical trial where x;
represents the difference in responses to two medical treatments in the ith pair
of a paired comparison experiment. If H, is true, the two treatments are
equally good, and from the patients’ point of view the experiment could
continue indefinitely. However, if H, is true, one or the other treatment is
superior, and the trial should terminate as soon as possible so that all future
patients can receive the better treatment.

An ad hoc solution to the problem of the preceding paragraph is the
following. Let b > 0 and let m be a maximum sample size. Sample sequen-
tially, stopping with rejection of H,, at the first n < m, if one exists, such that
|S,| > bn'2. Otherwise stop sampling at m and accept (do not reject) H,. The
significance level of this procedure is

(1.6) a = a(b,m) = Py{|S,| > bn'? for some n < m},

which means that b must be somewhat larger than 1.96 (depending on m) in
order that a(b, m) = .05.
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Tests of this sort were criticized by Feller (1940), who alleged that they were
used in extrasensory perception experiments without making the necessary
adjustment in the value of b to account for the sequential nature of the
experiment. (For these experiments, S, might count the excess of correct over
incorrect guesses by a subject who supposedly can predict the outcome ofa
coin toss before being informed of the result.) Feller also complained that there
was no definite value of m, so that one should consider the significance level to
be

lim (b, m),
which is known to equal 1 (for example, as a consequence of the law of the
iterated logarithm). Robbins (1952) gave an upper bound for a(h, m) and posed
the problem of giving a good approximation to o.

Such repeated significance tests were studied by Armitage et al. (1969) and
by MacPherson and Armitage (1971), who evaluated their significance level,
power, and expected sample size by lengthy numerical computations. The
theoretical research from which this book has developed began with
Woodroofe’s (1976) and Lai and Siegmund’s (1977) approximation for o (cf.
(4.40)), which was followed by a series of papers approximating the power and
expected sample size of repeated significance tests, extending the results to
more general models, and suggesting certain modifications of the test itself (see
Chapters IV and V).

As a preliminary to our study of repeated significance tests, we discuss the
sequential probability ratio test in Chapter II. Although it seems unlikely that
this test should be used in practice, the basic tools for studying it, to wit Wald’s
likelihood ratio identity (Proposition 2.24) and Wald’s partial sum identity
(Proposition 2.18), are fundamental for analyzing more useful procedures. So
called cusum procedures for use in quality control are discussed briefly in IL.6.

Chapters I11-V form the core of the book. The main conceptual ideas are
introduced in Chapter III in a context which minimizes the computational
problems. Truncated sequential probability ratio tests and Anderson’s modi-
fication of the sequential probability ratio test are also discussed. Repeated
significance tests are studied in detail in Chapter IV. A number of more
difficult examples are presented in Chapter V to illustrate the way one can
build upon the basic theory to obtain reasonable procedures in a variety of
more complicated contexts.

Chapters VI and VII deal with special topics. Chapter VI is concerned with
the allocation of treatments in clinical trials, and Chapter VII briefly intro-
duces the theory of fixed precision confidence intervals.

In order to maximize attention to statistical issues and minimize difficult
probability calculations, the mathematical derivations of Chapters IIT and IV
are essentially limited to the artificial, but simple case of a Brownian motion
process. Corresponding results for processes in discrete time are given without
proof and used in numerical examples. Chapters VIII-X provide the mathe-
matical foundation for these results. Chapter XI is concerned with some
miscellaneous probability calculations which are conceptually similar but
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technically more difficult than those which appear earlier in the book. Four
appendices present some background probabilistic material.

The most obvious omission from this book is a discussion of Bayesian
sequential tests. Even for the non-Bayesian, the use of prior probability
distributions is a useful technical device in problems which can reasonably be
treated decision-theoretically (i.e. have action spaces and loss functions). The
two principal fields of application of sequential hypothesis testing are sampling
inspection and clinical trials. Of these, the former seems often to admit a
decision-theoretic formulation, but the latter not. (For a contrary view, see
Anscombe, 1963, and for further discussion see 1V.6.) Hald (1981) gives a
systematic treatment of sampling inspection with ample discussion of
Bayesian methods. Other general introductions to sequential Bayesian hypo-
thesis testing without particular applications in mind are given by Ferguson
(1967), Berger (1980), and especially Chernoff (1972). To avoid a substantial
increase in the length of this book, the subject has been omitted here.

The formal mathematical prerequisites for reading this book have been held
to a minimum —at least in Chapters I1-VIIL. It would be helpful to have some
knowledge of elementary random walk and Brownian motion theory at the
level of Feller (1968), Cox and Miller (1965), or Karlin and Taylor (1975).
Appendix 1 attempts to give the reader lacking this background some feeling
for the essentials of Brownian motion, devoid of all details. Martingale theory
makes a brief appearance in V.5. Appendix 3 presents the necessary back-
ground—again informally.

One bit of nonstandard notation that is used systematically throughout the
book is E(X; B)to denote E(X I). (Here Iy denotes the indicator variable of the
event B, i.e. the random variable which equals 1 if B occurs and 0 otherwise. E
denotes expectation.) Some of the notation is not consistent throughout the
book, but is introduced in the form most convenient for the subject under
discussion. The most important example is the notation for exponential
families of probability distributions, which are introduced in I1.3, but para-
meterized slightly differently in I1.6 (the origin is shifted). They reappear in the
original parameterization in Chapter VIII, and in Chapter X they change
again to the parameterization of I1.6.

Problem sets are included at the end of each chapter. A few problems which
are particularly important have been designated with *. Those which are
somewhat more difficult or require specialized knowledge are marked *.

PROBLEMS

1.1. Suppose that the Poisson process X (t) is observed until the time w, of the rth
failure. Show that A¥(w,) is a (1 — «) 100%, upper confidence bound for 4.

1.2. Prove that for A* defined by (1.4)
P{XT ., X(T)] =22} =21 —a for all 4.
Hint: Note that A¥(m) = 2%(r — 1). Consider separately the two cases A¥(m) > 4
and 2¥(m) < 4.



