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AUDITORY SPECTRAL PROCESSING: AN OVERVIEW

Dexter R. F. Irvine* and Manuel S. Malmiercat

*Department of Psychology, Faculty of Medicine, Nursing, and Health Sciences
Monash University, Victoria 3800, Australia
TLaboratory for the Neurobiology of Hearing, The Institute of Neuroscience of ‘Castilla y Leon’
and Faculty of Medicine, University of Salamanca,
Salamanca 37007, Spain

Almost all natural sounds and sounds produced by man-made devices (such
as musical instruments) are composed of multiple frequencies and their frequency
composition varies over short time periods, i.e., they have complex and time-
varying frequency spectra. Although a great deal of information can be derived
from auditory signals in which the spectral information is considerably degraded
(such as those transmitted by most telephones), it is nevertheless the case that a
full perceptual appreciation of most complex sounds depends on the availability
of a non-degraded representation of the spectral detail. Examples of such per-
ceptual experiences are the appreciation of music and the extraction of so-called
indexical information from speech, i.e., information about the speaker’s age,
gender, mood, and so on (e.g., Nygaard and Pisoni, 1995). Detailed spectral
information has also been shown to be critically important in the processes of
identifying the discrete auditory objects comprising complex auditory scenes, in
which the sound waves generated by multiple sources sum together to form a
single complex pressure wave at each eardrum, and of sound localization. The
importance of detailed spectral information in these important aspects of human
and animal hearing indicates that this information must be encoded in the
peripheral auditory system and then made available to and processed in the
central auditory brain pathways and associated structures that ultimately give rise
to our auditory perceptual experience. It is the aim of this volume to provide a
comprehensive overview of the neural mechanisms of auditory spectral proces-
sing and of the ways in which spectral information is used by human listeners to
generate their auditory perception of the world around them.

Each point on the basilar membrane (BM) in the cochlea has a characteristic
frequency (CF) at which it responds maximally, and the BM carries out a real-
time spectral analysis of the pressure wave delivered to the inner ear by the outer
and middle ears. The filtering properties of the BM depend partly on its passive
mechanical properties, first described in the pioneering studies of von Békésy
(1960), and partly on an active process of amplification (produced by forces
generated by the outer hair cells [OHCs]) which feeds energy back into the
cochlea at sound pressure levels (SPLs) close to threshold (Robles and Ruggero,

INTERNATIONAL REVIEW OF 1 Copyright 2005, Elsevier Inc.
NEUROBIOLOGY, VOL. 70 All rights reserved.
DOL: 10.1016/50074-7742(05)70000-3 0074-7742/05 $35.00



2 IRVINE AND MALMIERCA

2001). As a consequence of these processes, each inner hair cell (IHC) is sharply
tuned to the CF of the point at the BM at which it is located, and each of the
auditory nerve (AN) fibers that innervate that hair cell has the same CF and sharp
frequency tuning as the hair cell from which its input is derived (Patuzzi and
Robertson, 1988). One way in which spectral information is conveyed to the
central nervous system (CNS), therefore, is in the distribution of activity across
the AN fiber array. At frequencies below 3 to 4 kHz, the discharge of AN fibers is
phase-locked to the stimulus waveform, with the consequence that information
about spectral components in this frequency range is also encoded in the tempo-
ral pattern of the discharge of AN fibers. These peripheral mechanisms, and
models of the processes involved, are discussed in detail by Lopez-Poveda in
Chapter 1.

The mechanical and neural filtering that occurs in the peripheral auditory
system underlies the frequency resolution ability exhibited by human and
animal listeners. Psychophysical evidence on the frequency resolving ability of
human listeners is reviewed by Moore in Chapter 2. As previously noted,
however, most natural sounds have complex frequency spectra, and our percep-
tion of those sounds involves the integration of information in different frequency
bands. This integration begins in the cochlear nucleus, where all of the AN fibers
carrying information to the brain terminate, and is continued in the ascending
auditory pathways that extend from the cochlear nucleus to the auditory cortex.
In Chapter 3, Grose and colleagues discuss the major auditory phenomena that
reflect across-channel frequency processing and consider the ways in which this
processing can be understood. A number of the aspects of across-channel proces-
sing discussed in this chapter relate to the analysis of complex auditory scenes and
the segregation of the separate auditory “streams” produced by different sound
sources. The role of spectral information in this process 1s examined explicitly in
Chapter 11 by Sinex, who also presents physiological evidence from the auditory
midbrain nucleus, the inferior colliculus (IC) relating to some of the neural
mechanisms involved. This chapter depends in part on some of the material
presented in the chapters on the processing of spectral information at different
levels of the auditory neuraxis and, therefore, it follows those chapters. The use of
spectral information for sound localization similarly involves integration across
frequency bands, and psychophysical and neurophysiological evidence on these
processes is reviewed in Chapter 12 by Carlile and his colleagues.

The capacity of human listeners to perform complex perceptual tasks despite
degraded spectral information was alluded to in the previous text, and is exam-
ined explicitly by Shannon in Chapter 4, in which he contrasts the limited
amount of spectral information needed for the perception of speech with the
detailed information required for the recognition and appreciation of music. The
robustness of speech perception in the face of degraded spectral information
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reflects the fact that our auditory perceptual experience depends not only on
the processing of spectral and other information contained in the acoustic signal
but also the interpretation of this information in terms of stored information
based on our auditory experience of the world (i.e., on what have been termed
“bottom-up” and “top-down” processes). Although the emphasis of this book is
on the former, all of the chapters dealing with the more complex aspects of
auditory spectral processing point to the overwhelming importance of top-down
processing.

Bottom-up processing is the focus of Chapters 5 to 9, in which the central
processing of spectral information at successively “higher” levels of the ascending
auditory pathway is examined: in the cochlear nucleus by Young and his col-
leagues (Chapter 5); in the midbrain by Davis (Chapter 6), in the thalamocortical
system by Escabi and Read (Chapter 7), and in auditory cortical fields by Sutter
(Chapter 8). The psychophysical evidence for integration of information across
frequency bands reviewed by Grose et al. in Chapter 3 is complemented by
neurophysiological evidence for such integration at all levels of the central
auditory pathway. Much of this integration is highly non-linear, and in Chapter
5, Young and his colleagues examine in detail the non-linear integration in the
circuitry in the dorsal cochlear nucleus, and the difficulties raised by this non-
linearity for the task of measuring spectral sensitivity and predicting neural
responses to complex stimuli. These issues are also examined in the context of
the thalamocortical levels of the system in Chapters 7 and 8.

The spectral selectivity of individual auditory CNS neurons in animal prep-
arations has been measured in a number of ways over the more than 60-year
history of auditory single-unit neurophysiology. In what appears to have been the
first measurement of neuronal frequency selectivity, Galambos and Davis (1943)
defined what they called the “response areas” of AN fibers by determining the
range of frequencies by which the fiber was excited at each of a range of SPLs.
Similar procedures remain in wide use today: response amplitude (and other
response characteristics) are measured over a wide range of frequency-SPL
combinations, usually presented in pseudo-random order under computer con-
trol, to generate what are commonly called frequency response areas (FRAs). An
alternative procedure is simply to measure threshold as a function of frequency
(sometimes using an automated threshold-tracking algorithm) to generate a
frequency tuning curve (FTC), which corresponds to the boundaries of the
FRA. In the absence of spontaneous activity, neither of these methods is able
to reveal inhibitory components of neuronal FRAs, a problem solved by the use
of more complex two-tone stimuli. More recently, a range of methods using
spectrally complex stimuli and reverse-correlation analytic techniques have been
employed to generate spectro-temporal receptive fields (STRFs), which reveal the
manner in which excitatory and inhibitory components of the response area vary
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over time. These methods and their applications, strengths, and weaknesses are
discussed by Young and his colleagues in Chapter 5, by Escabi and Read in
Chapter 7, and by Sutter in Chapter 8.

All of these methods are based on measurement of the action potentials
generated by the neurons, and thus do not provide information on excitatory
synaptic inputs that are below the threshold for action potential generation.
Intracellular recordings from auditory cortical neurons have shown that, like
neurons in other sensory cortices, they receive such subthreshold inputs in
response to a range of stimuli (in this case, frequency-SPL combinations) outside
the “classical” response areas defined in terms of the neurons’ spike activity (e.g.,
Kaur ¢t al., 2004).

In Chapter 9, Rees and Malmierca review the ways in which neurons at
different levels of the auditory pathway respond to frequency modulations.
Dynamic changes in frequency, whether as modulations of single tones or clusters
of harmonics, are important information bearing elements of natural sounds, and
acoustically distinguishing attributes in the vocal repertoire of many species.
Specificity for parameters like the direction of frequency change is apparent at
all levels above the auditory nerve. At more central locations, there is evidence
for increased specificity, topographic mapping of frequency modulation param-
eters, and differences in response properties between cortical subdivisions.

The single unit recording techniques which have provided such rich infor-
mation about spectral processing mechanisms in animal models are not applica-
ble to the human auditory CNS, except under exceptional conditions, such as
when such recordings are made in association with surgery and electrical record-
ing to identify epileptogenic foci (e.g., Brugge et al., 2005). However, the study of
human auditory cortical activity, and specifically of spectral processing in human
auditory cortex, has been revolutionized in recent years by the development of a
range of functional imaging techniques, culminating in functional magnetic
resonance imaging (fMRI). These methods, and the data on spectral processing
in human auditory cortex that they have yielded, are examined by Hall in
Chapter 10. In contrast to the dependence of most animal electrophysiological
recording techniques on neural spiking activity, the signals generated by imaging
techniques such as f MRI reflect predominantly population synaptic activity.

The processing of spectral information occurs in auditory circuitry that until
relatively recently was thought to be modifiable by experience early in develop-
ment, but stable in adults. It has now been realized that sensory cortical and
subcortical structures retain substantial capacity for plasticity in adult animals as
a result of altered input consequent on either injury (e.g., Kaas and Florence,
2001) or various types of learning (e.g., Weinberger, 2004). Much of the evidence
for such plasticity in the auditory system has been derived from psychophysical
and electrophysiological studies of the processing of spectral information, and this
evidence is reviewed by Irvine and Wright in Chapter 13.
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Almost certainly the most interesting application of our knowledge of spectral
processing is provided by the cochlear implant, which has now been used to
restore functional hearing to tens of thousands of profoundly deaf people. The
design of cochlear implants and the processing strategies utilized in them have
been based on our knowledge of peripheral spectral processing, i.e., understand-
ing of cochlear place and temporal coding mechanisms was applied to the task of
electrically stimulating surviving auditory nerve fibers in the manner that was
most effective in evoking normal auditory percepts. But the flow of information
has been bi-directional: the perceptual experiences of implant users have also
provided valuable information about basic mechanisms of spectral processing.
Furthermore, the improvement in performance of implant users over the post-
implantation period stands as perhaps the most dramatic practical example of
plasticity in auditory processing. These issues are reviewed in detail by McKay in
Chapter 14, and are also examined by Shannon in Chapter 4.

A final comment is required concerning the relationship between the chapters
comprising this volume. It is our hope that the chapters together make up an
integrated whole which gives a comprehensive overview of auditory spectral
processing, although as previously noted more attention is given to bottom-up
than to top-down processes. It is realized, however, that the interest of many
readers will be focused on particular issues in the field. Therefore, each chapter
has been designed to stand alone, even though this might involve some overlap in
the content of various chapters, or even disagreement between authors as to the
interpretation of particular effects or the value of certain techniques. The overlap
is an unavoidable consequence of making the chapters stand-alone; the disagree-
ment is a characteristic of any dynamic research area.
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