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Preface

The Second Symposium on Numerical and Physical Aspects of Aerodynamic
Flows was held at California State University, Long Beach, from 17 to 20
January 1983. Forty-eight papers were presented, including Keynote Lec-
tures by A. M. O. Smith and J. N. Nielsen, in ten technical sessions which
were supplemented and complemented by two Open Forum Sessions,
involving a further sixteen technical presentations and a Panel Discussion
on the “Identification of priorities for the development of calculation
methods for aerodynamic bodies.” The Symposium was attended by 120
research workers from nine countries and, as in the First Symposium,
provided a basis for research workers to communicate, to assess the present
status of the subject and to formulate priorities for the future. In contrast to
the First Symposium, the papers and discussion were focused more clearly
on the subject of flows involving the interaction between viscous and
inviscid regions and the calculation of pressure, velocity and temperature
characteristics as a function of geometry, angle of attack and Mach number.
Rather more than half the papers were concerned with two-dimensional
configurations and the remainder with wings, missiles and ships.

This volume presents a selection of the papers concerned with two-
dimensional flows and a review article specially prepared to provide essen-
tial background information and link the topics of the individual papers.
The decision to concentrate on two-dimensional flows was taken because the
related papers provided the best compromise between a cohesive pattern of
research- activity and the economy of space so necessary in published
volumes of proceedings. The papers concerned with three-dimensional flows
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are in the unpublished volume prepared by the University and available
from the Chairman of the Mechanical Engineering Department. Those
presented here have been modified and improved as a consequence of
.suggestions made by the session chairmen and the authors themselves. In
most cases, they have been shortened to meet the stringent limitations
imposed by the need to ensure the best value for each printed page. It is a
pleasure to acknowledge the willingness with which the contributors under-
took the task of modification and the efforts which they so successfully
made to ensure that their papers conveyed essential information, and
thereby contributed to the archival nature of the volume.

The review article, prepared by Professors K. Stewartson and J. H.
Whitelaw and myself, attempts to put the individual papers in context with
each other and with the larger body of information available in recent
literature. It also provides recommendations for future research which are
based, in part, on the related Panel Discussion of the Symposium at which
statements were provided by L. Keel, R. E. Melnik, H. McDonald, M. W.
Rubin and H. Yoshihara. The Keynote paper by A. M. O. Smith is
concerned with wings, as well as airfoils, and provides a practical perspec-
tive for those whose current research emphasis is on two-dimensional flows.
The remaining 22 papers have been placed in four parts which bring
together the closely related papers and provide a convenient framework for
the reader.

The Symposium was made possible partly by financial support provided
to the California State University by NASA Ames and Langley Research
Centers, the U.S. Army Research Office (ARO), the National Science
Foundation (NSF) and the Naval Sea Systems Command (NAVC). and also
by the cooperation of authors, session chairmen, participants and colleagues
at the University. Particular thanks are due to W. F. Ballhaus and V. L.
Peterson of NASA Ames, D. Bushnell of NASA Langley, R. E. Singleton of
ARO, G. K. Lea of NSF, L. Pasiuk of NAVSEA and H. Unt of the
University. The content of the volume was decided after extensive discus-
sions, especially with D. Bushnell. H. McDonald, K. Stewartson and J. H.
Whitelaw. The editing process benefitted considerably from the efforts of
Nancy Barela and Sue Schimke and it is a pleasure to acknowledge their
help. : ’

Long Beach, California ' TUNCER CEBECI
April 1983 '
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Calculation of Two-Dimensional Flow
Past Airfoils

T. Cebeci,* K. Stewartson,! and J. H. Whitelaw?#

1. Introduction

The classical method of calculating flows past airfoils is to assume that
viscous effects are confined to their immediate neighborhood and that the
remainder of the flow-field can be assumed inviscid. Hence the pressure
distribution may be computed from potential-flow equations and the drag
subsequently obtained from the turbulent boundary-layer equations. This -
procedure has a considerable range of practicability but is inappropriate for
the solution of some practical problems which occur, especially at high
angles of attack and with the more complicated airfoil shapes in use at the
present time. At low speeds these problems are chiefly associated with
separation, both for laminar and turbulent flows, and with the understand-
ing of the correct representation of transition and turbulent flow processes.
At transonic speeds the appearance of shocks in the inviscid part of the flow
field and their interaction with the boundary layer represent additional
difficulties.

A principal handicap faced by the older schools of scientists in this areca
was the lack of computers to test the mathematical models of the flaw field
that had been suggested and to guide theoreticians towards the development

*Department of Mechanical Engincering, California State University, Long Beach, CA
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2 T. Cebeci, K. Stewartson, and J. H. Whitelaw

of more appropriate ones. The situation changed during the 1960s as
computer technology helped scientists to provide better insight into
flowfields. For many, the critical point was reached with the paper by
Murman and Cole [1] on inviscid transonic flow with shocks; afterwards the
computer revolution in aerodynamics was underway. An illustration of the
change is that whereas in 1970 less than 5% of papers in the AIAA Journal
were devoted to computations, in 1980 it was 23% [2].

In this review we consider recent advances in our abilities to calculate
subsonic and transonic flows around practical airfoils and in our under-
standing of their nature. The review, and the individual papers which
follow, should be viewed in the context of similar efforts with the three-di-
mensional flows associated with wings and the design methods presently in
use in the aircraft industry. The volume of papers presented at the Second
Symposium [3] shows that the techniques developed for two-dimensional
flows are readily extended to represent three-dimensional flows although the
design process is still conducted with sophisticated potential-flow methods
and simple viscous methods which are frequently based on the solution of
integral equations. Further information on the procedures in current use by
aircraft companies may be found, for example, in the papers of Lynch {4, 5],
Bristow [6]. Gilmer and Bristow [7]. and Wigton and Yoshihara [3].

The emphasis of the review, and of the papers which follow it, is on
calculation methods and their ability to represent a priori the flow around
airfoils as a function of shape, angle of attack and Mach number. The
following section provides a brief general review of the constituent compo-
nents of calculation methods and in particular describes different forms of
the conservation equations and their relative merits, together with the
implications of assumptions which may be invoked to permit their numeri-
cal solution and to represent the important characteristics of transitional
and turbulent flows. Particular procedures which have been used to repre-
sent airfoil flows are considered in Section 3 which evaluates and compares
procedures involving the interaction of solutions of the potential-flow and
boundary-layer equations and the solution of time-averaged forms of the
Navier-Stokes equations with a solution domain which encompasses the
potential-flow region.

As a consequence of this emphasis, little is said about experimental
techniques although their successful use is essential to the evaluation and
improvement of the calculation methods. Three of the papers in this volume,
i.e., those of Render and Stollery, Adair, Thompson and Whitelaw, and
Nakayama, present measurements of pressure and velocity characteristics
obtained by techniques which include pressure transducers, hot-wire
anemometry, flying-wire anemometry and laser velocimetry. These papers,
and the references which they contain, allow an interested reader to pursue
these topics further. The volume edited by Emrich [8] and particularly -
Chapter 9, will provide a more general introduction. It must be emphasized
that all of the calculation methods discussed in Sections 2 and 3 and in the
following papers are approximate and that the achievement of a truly



Calculation of Two-Dimensional Flow Past Airfoils 3

predictive calculation method requires the incorporation of physical infor-
mation and the use of numerical solution methods. The former is essentially
based on experimental evidence of the particular flow phenomenon in
question and the latter, although based on knowledge of the numerical
assumptions, requires evaluation with specific boundary conditions and
again experiments are essential. Summary conclusions are presented in
Section 4 together with recommendations based, in part, on a panel discus-
sion held at the Symposium to consider priorities for future developments.

2. Reynolds-Averaged Navier—Stokes Equations and Their
Solution

It 1s generally accepted, with a very great deal of a posteriori justification
but nevertheless partly as an act of faith, that the unsteady Navier-Stokes
equations for a compressible fluid together with a suitable equation of state,
often that for a perfect gas, are sufficient to describe the flow past a
practical airplane. Unlike simpler versions they are free from paradox [9]
and while the mathematical theory is not yet complete, sufficient progress
has been achieved to give us confidence that solutions do exist with the
general properties experience tells us they must have [10]. Their oniy
fundamental weaknesses are that they do not appear to describe flow details
in the interior of moderate or strong shocks and at the tip of a very sharp
edge. Neither weakness 1s material here. Even at a Mach number of 1.05
and a Reynolds number of 107 the shock thickness is about the same as that
of the laminar sublayer of a turbulent boundary layer [11] and as Mach
number rises the thickness rapidly detfeases. Thus no significant loss in
accuracy arises by regarding it as an unresolved discontinuity, conditions on
either side being related by the Rankine-Hugoniot conditions, about the
validity of which there appears to be no dispute. A difficulty may arise with
the shock, fitted in this way, as it penetrates the boundary layer since the
discontinuity changes to a region of rapid variation and eventually the
shock loses its identity. However, at the present stage of the development of
the computational art the shock is captured as a finite transition region and
the effect of the boundary layer is to modify its structure and thickness. The
failure at the tip of a sharp edge is local and confined to distances small
compared with the radius of curvature of the nose of a practical airfoil.
Even so, the full numerical solution of these equations is not seriously
‘considered as a reasonable goal of computational effort at the present time
due to the difficulty of resolving all the scales of the motion especially in
regions of turbulent flow. The principal effort is devoted to the solution of
reduced forms of the Reynolds-averaged Navier-Stokes equations in which
the resolution of the turbulence is limited, for example, to a grid dimension
of the order of §/20, where § represents the corresponding characteristic
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dimension of the flow, and the effects of the subgrid turbulence are
modelled. The various flow properties are averaged over the grid element
and also over a time much shorter than that believed to be of interest and
we obtain the equations:

dp  9pu; _
ot T ax, =Y (1)
du, 09 p do,,
L T axi("“’ u;) = 8x (2)
Oh 0 (hu)=yu P O %% By
Par * o, P = g+ G~ Ty, T, 3)

The coordinates in these equations are Cartesian, p, p are the averaged
pressure and density, and u,, & are the velocity components and enthalpy-
averaged with a mass-weighting [12]. Further o,; and g, denote the un-
weighted averaged stress tensor and heat flux with

du, Ou; 1_ du,

0;;= MU K-F?);_SBUE -R,; (4)
il .
qj— Pr ax +Q (5)

where p is the viscosity so that » = p /p is the kinematic viscosity.
Ry =(bujujy,  Q;=(pu;h’) (6)

( ) denotes the averaged value, the caret means the actual value before
averaging, and the prime denotes the difference between the actual value
and the mass-weighted average. IiShould be noted that the mass-weighted
forms of dependent variables, for example u;, = {p#;)/p, are equal to the
unweighted forms for Mach number less than around 0.3 and that the
difference is of little practical significance at Mach numbers less than
around 0.5. At higher Mach numbers, and where comparison with measure-
ment is required, it is important to know whether the unweighted or
weighted property has been calculated or measured. The bulk viscosity is
ignored and although it is not necessarily zero for gases with polyatomic
" molecules such as air, its effect is only significant in shock interiors which
have been excluded from consideration.

The adaptation of these equations to a form suitable for computation
requires three principal steps which are the subjects of the following
subsections. First, the form of equation depends on presumed physical
features of the flow under consideration: for example, the equations re-
quired to represent a low-speed attached boundary layer are simpler than
those required for a high-speed flow with a large region of separation.
Secondly, the numerical procedure required to solve the equations depends
on the form of equations and its successful implementation depends on the
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method of discretization within the solution domain. Thirdly, the terms R,;
and Q; must be expressed in terms of dependent or mdependent vanables
These steps are considered here in a general way and, in the following
sections, in relation to specific investigations.

2.1. Some Reduced Forms of the Navier-Stokes Equations

If the viscous and conduction terms are omitted from the equations of
motion (1) to (3), they reduce to Euler’s equations for inviscid flow. The
solution of these equations is the ultimate goal of inviscid flow studies and
at the present time methods based on their time-dependent forms are under
intense development but few specific applications to practical airfoils have
been made. Among relevant papers are two studies by Jameson and
Schmidt, one with Turkel [13] in which they obtain converged solutions for
a symmetric airfoil in transonic flow and another with Whitfield and
Thomas, in this volume, in which the effects of viscosity are added.

More commonly a further approximation is made by assuming that the
flow is irrotational when the governing equations take on the potential form

a¢ % %
WY LN e Z. 2N LW
(a*—u ) 2u03x8y+(a )
7
_Zua% %% 3% _ i

axar “Uayar 32
where (u, v) are the velocity components, ¢ the potential and a the velocity
of sound. If the flow is incompressible, ¢ satisfies Laplace’s equation and
there are a variety of methods available for its determination, the most
common being the so-called panel method which uses both a source and a
dipole or vorticity density on surface panels that represent the body about
which flow is to be computed [6, 14]. Conformal mapping techniques
employing rapidly convergent iteration schemes and highly efficient numeri-
cal procedures (including the Fast Fourier transform) are also useful and
have enabled complex multielement airfoil systems to be studied [15, 16].
Once compressibility effects are significant, commonly when M > 0.4, the
use of such distributions on the airfoil is generally inappropriate. However,
if the significant compressibility effects are limited in extent, the nonlineari-
ties in Eq. (7) may be interpreted as source distributions in the flow field to
be computed iteratively from the source distribution on the airfoil. Other-
wise finite-difference or finite-element methods must be used. For wholly
subsonic flow these methods prove to be quite satisfactory; with the Kutta
assumption at the trailing edge and provided separation does not occur in
the boundary layer, they can by themselves give lift coefficients within 10%
of the true values. The associated drag is zero, however, since the effects of
viscosity are ignored.

For transonic flow, two additional problems arise. First, Eq. (7) changes
its character and becomes hyperbolic in the supersonic part of the flowfield.
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Second, shocks can appear in this part and cannot be completely resolved
by a solution of Eq. (7) for the assumption that the flow is potential is
violated behind curved shocks, from which vorticity is generated and travels
downstream along the broad streamlines. Moreover Eq. (7) assumes that the
entropy is constant everywhere so that p/p” is invariant. In fact the entropy
jumps across a shock although the jump is only O(e’) when the shock
strength is O(e). The general opinion appears to be that the equations are
best solved in conservative form as a set of first-order equations of the type

9

ar K =0 (8)
[Eq. (1) is an example] which facilitates the capture of discontinuities and
avoids the generation of fictitious sources along them. In addition, it is
easier to satisfy the requirements of mass conservation.

A simplified version of these equations is the transonic small perturba-
tion equation (TSP), which follows from Eq. (7) by assuming that u = a and
» << g, and is relevant to flow past thin airfoils at small angles of attack
lying close to the x-axis. The steady form of the TSP equation is

[l_ —(‘Y+1)M’¢.]¢rr+¢n_ (9)

A number of equivalent forms have been used in practice in an attempt to
overcome some small but systematic discrepancies. Cheng and Meng [17]
have pointed out that one source of the discrepancies may be removed by an
improved description of the critical speed on the body. This leads to a
redefinition of the transonic similarity parameter now close to that proposed
by Murman and Cole. Integration through the sonic point has caused
problems in the past but recently new schemes have been proposed to
overcome them by ensuring the entropy must increase through a shock
transition, Enquist and Osher [18]. The TSP equation particularly as imple-
mented by the LTRAN2 computer code has proved to be very valuable in
design studies of practical airfoils, both in steady and unsteady motion and
the achievements to date are described in an excellent review by Ballhaus
et al [19].

There are, however, frequently significant discrepancies between theory
and experiment which can only be explained by viscous effects. We have
already mentioned errors in lift and drag for incompressible flow and these
grow progressively larger as the Mach number increases even when the flow
remains, attached. Indeed at transonic speeds viscous effects can reduce the
lift by 50% and move the shock by 20%-30% of chord [20]. The classical
way of overcoming this deficiency is to introduce the boundary-layer
concept. The usual form of the boundary-layer equation is

gl ity L0, ] 6( z:;) ((uv)) (10)

ds on pds+;3n

where s, n denote distances along and normal to the airfoil or the wake line
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and u.v are the corresponding velocity components. The position of the
wake-line is assumed to be fixed to a first approximation by inviscid theory
as is the pressure distribution along it and on the airfoil surface. In a
hierarchical approach to the calculation of the flow properties. the inviscid
equations are solved first and then the boundary-layer equations. This
procedure is unsatisfactory near the trailing edge where the boundary layer
exerts a significant influence on the external flow and at separation where it
leads to a singularity [21] and hence a contradiction. It is more usual to
adopt an interactive approach where the inviscid and boundary-layer equa-
tions are solved simultaneously. The solutions of the boundary-layer equa-
tions provide us with the displacement thickness 6* and the momentum
thickness @ on the airfoil and in the wake and these may be used as
boundary conditions for the inviscid flow calculations which then give the
pressure distribution needed for Eq. (9) and the wake curvature x. This
procedure is sometimes referred to as the “standard problem™ as opposed to
the “inverse problem™ where the wall shear stress or displacement thickness
is used as an extra boundary condition for the boundary-layer equations.
These boundary-layer properties may be implemented by defining a dis-
placement airfoil. which surrounds and extends to infinity downstream of
the rigid airfoil but is not closed. together with a given pressure jump across
it. or by defining a blowing velocity from the surface of the airfoil and a
velocity discontinuity across the streamline issuing from the trailing edge
(wake-line). The two approaches are equivalent. each having the same
theoretical range of validity but the second has the advantage that only the
boundary conditions need changing as the iteration proceeds. the grid
remaining largely unaltered. More extended accounts of these procedures
are given by Veldman [22] and by Lock [23].

For laminar flow (uv’) is zero and the solution of Eq. (7). together with
the corresponding forms of the continuity and energy equations. is possible
without the addition of physical information other than boundary condi-
tions. The solution of Eq. (10), however, requires that the velocity correla-
tion (uv") be specified in terms of dependent or independent variables and
this topic is discussed in Section 2.3. In situations where compressibility or
heat transfer is important, the energy equation must also be solved and
turbulent flow again requires kn@wledge of a correlation term, in this case
<l7"1'>. reatls

The interactive scheme is effective for a wide class of practical airfoils but
is inappropriate when there are substantial regions of separated flow over
the airfoil except when used semi-empirically (see Section 3). Moreover the
cross-stream pressure gradient becomes important whén the curvature of the
airfoil surface is large or when the boundary layer is thick. One obvious way
is to incorporate a second momentum equation of the form

ap

Frial L (11)

where k is the curvature of the airfoil surface. Strictly. this equation is
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limited to boundary layers that are thin since for thick layers the curvature
of the streamline varies significantly across them. Huang, Groves and Belt
[24] point out that good results may then be obtained by replacing « in Eq.
(11) by some mean value. In such circumstances, however, the sharp
distinction between the boundary layer and the inviscid flow becomes less
valid and it is natural to look for ways in which the two sets of equations
can be combined into one without having to invoke the full equations. One
possibility is to add the viscous terms of the boundary layer equations,
d/dn[p(dku/adn)] and d/dn{u’v’), to the inviscid equations to obtain a set
sometimes referred to as the parabolized Navier-Stokes equations and used
by Rubin and Reddy in this volume. These equations may then be solved by
a combination of the methods appropriate to the inviscid and boundary-layer
equations separately. Thus for two-dimensional incompressible laminar flow
over a flat plate lying along the x-axis, we have, in the simplest form,

du dv N

.(9_.\’- + (9_\. =0
du du du - 1dp d%u
oy Tug 3y~ " pax +v I (12)
v dv v dp

1
at Ax ay ; y

Near the trailing-edge formal objections can be lodged against the
boundary-layer concept but for laminar flow the interactive approach does
at least provide the principal features of the flow [25]. If, as is usually the
case. the flow is turbulent there, the assumption @ /dn > @ /ds fails [26] but
nevertheless a considerable measure of success has been achieved in using
the concept to predict the gross and important features of the flowfield. e.g.
Butter and Williams [27] for incompressible flows and LeBalleur [28] who
also studied transonic flows. Melnik [20] has examined the structure of the
turbulent boundary layer near the trailing edge on the assumption that
d/dn ~ d/ds and the turbulence is frozenis= ’

The boundary-layer concept, used in the interactive mode, can provide a
good representation of small regions of separation on the airfoil. When they
occupy a significant portion, the concept becomes inadequate and it is
generally accepted that recourse must be had to a solution of the full
Reynolds averaged Navier-Stokes equations. It should be recognized that
the size and strength of recirculation which requires the solution of these
equations remains to be quantitified and the merits or representing cross-
stream pressure gradients by different forms of the y-momentum equation
are also imprecisely defined. Solutions of the Navier-Stokes equations
obtained to date have a mixed record of success.



