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PREFACE

~ This text is a nonmeasure theoretic introduction to stochastic processes, and
" as such assumes a knowledge of calculus and elementary probability. In it we
attempt to present some of the theory of stochastic processes, to indicate its
diverse range of applications, and also to give the student some probabilistic
intuition and insight in thinking about problems. We have attempted, wherever
possible to view processes from a probabilistic instead of an analytic point of
view. This attempt, for instance, has led us to study most processes from a sample
path point of view.

I would like to thank Mark Brown, Cyrus Derman, Shun-Chen Niu, Michael
Pinedo, and Zvi Schechner for their helpful comments.

SHELDON M. Ross
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CHAPTER 1

Preliminaries

1.1 PROBABILITY

A basic notion in probability theory is random experiment : an experiment whose
outcome cannot be determined in advance. The set of all possible outcomes of
an experiment is called the sample space of that experiment, and we denote it
by S.

An event is a subset of a sample space, and is said to occur if the outcome of
the experiment is an element of that subset. We shall suppose that for each event
E of the sample space § a number P(E) is defined and satisfies the following three
axioms*:

Axiom(l) O< P(E)< 1.

Axiom(2) P(S)=1. .

Axiom (3) For any sequence of events E|, E,, . .. that are mutually exclusive,
that is, events for which E,E; = ¢ when i # j (where ¢ is the null
set),

P(O Ei>= S P(E)).
i=1 i=1

We refer to P(E) as the probability of the event E.
Some simple consequences of axioms (1), (2), and (3) are:

1.1.1. If E c F, then P(E) < P(F).

1.1.2. P(E°) =} — P(E) where E* is the complement of E.

113, P(|J} E) =Y P(E) when the E; are mutually exclusive.
1.14. P(Jf E) <. f P(E).

The inequality (1.1.4) is known as Boole’s inequality. A

An important property of the probability function P is that it is continuous.
To make this more precise, we need the concept of a limiting event, which we
define as follows: A sequence of events {E,, n > 1} is said to be an increasing
sequence if E, = E,,,,n>1 and is said to be decreasing if E,>E,,,,n>1.

* Actually P(E) will only be defined for the so-called measureable events of §. But this restriction need

not concern us. 8550047



2 PRELIMINARIES

If {E,.n = 1} is an increasing sequence of events, then we define a new event,

denoted by lim,_ , E, by

limE, = | ) E when E, < E,,,, n>1.

n—x i=1

Similarly if {E,. n > 1} is a decreasing sequence, then defined lim,_, E, by

limE, = [ E, when E, o E,,;, n>1.

n—u i=1

We may now state the following:

PROPOSITION 1.1.1

If E,.n > 1} is either an increasing or decreasing sequence of events, then

lim P(E,) = P(lim E,,).

Proof  Suppose, first, that {E,. n 2 1) is an increasing sequence, and define events F,, n > 1 by
F,=E,.
n—1 <
F,,:E,,(U E,-) =EE_,. n>l
vl

That is, F, consists of those points in E, that are not in any of the earlier E;, i < n. It is easy
to verify that the F, are mutually exclusive events such that

1 r n n
) Fi= U1 E; and Ul Fo=1JE foralln>1
i=1 i= i= i=1

Thus

I N

r(05)- (7

i

=3 P(F) {by Axiom 3)
1

= lim Z P(F)
1

n-

f

lim P(U F,-)
n— L \ 1
lim P(U E,.)

Y

it

fl

lim P(E,),

n-sr

which proves the result an é‘EGI 6 L&is(ﬂrgasing. ;



1.1 PROBABILITY 3

If {E,, n > 1} is a decreasing sequence, then {E;, n > |} is an increasing sequence: hence,

P(U E; ) = lim PIE;).
1 i

N

But, as | 7 £, = (T E,), we see that
L P E) = lim [1 - PE)

/

or, equivalently.

P(ﬂ E, )= lim PIE,.
A

n= s

which proves the result.

Example 1.1(a). Consider 4 population consisting of individuals able 10 produce off-
spring of the same kind. The number of individuals mninally present, denoted by X, is
called the size of the zeroth generation. All offspring of the zeroth generation constitute
the first generation and their number is denoted by X |. In gencral. let X, denote the size of
the nth generation.

Since X, = 0 implies that X, | = 0, it foHows that P{X, = 0] is increasing and thus
lim,., P{X, =0} exists. What does it represent? To answer this use Proposition 1.1.1
as follows:

lim P X,=0, = P-Ilim X,=0) '(

n—=y ‘n‘

~p) X, =oh
I g

= P the population ever dies out!.

That is, the limiting probability that the nth generauion 15 void of individuals is equal to
the probability of eventual extinction of the population.

Proposition 1.1.1 can also be used to prove the Borel-Cantelli lemma.
PROPOSITION 1.1.2. The Borel-Cantelli Lemma
Let Ey, E,, . . . denote a sequence of events. I

Y PIE)< .
=1

then
P{an infinite number of the E; occur! = 0.
Proof The event that an infinite number of the E; occur, called the hmsup E,, can be ex-

=

expressed as

limsup E, = 7} {J E,.

i~



4 PRELIMINARIES

This follows since if an infinite number of the E; occur, then | )=, E; occurs for each n and
thus ()% (J, E; occurs. On the other hand, if (2, {Ji=, F; occurs, then ( %, E; occurs
for each n, and thus for each n at least one of the E; occurs where i > n; and, hence, an infinite
number of the E; occur. '

As )&, E;, n = 1,is a decreasing sequence of events, it follows from Proposition 1.1.1 that

P(ﬁ O E,-)= P(lim O E,-)

n=1i=n A j=p

= lim P( Ei)

< lim i P(E)

RN =gy

=,

s

and the result is proven.
Example 1.1(b). Let X,, X,, ... besuch that
P{X,=0}=1/*=1-P{X,=1}, nz1l
If w;e let E, = {X, = 0}, then, as } * P(E,) < oo, it follows from the Bdrel—Cantelli lemma
that the probability that X, equals O for an infinite number of » is equal to 0. Hence, for

all n sufficiently large, X, must equal 1, and so we may conclude that, with probability 1,

lim X, =1

For a converse to the Borel-Cantelli lemrﬁa, independence is required.
PROPOSITION 1.1.3. Converse to the Borel-Cantelli Lemma
IfE,, E,, ... are independent events such that
i P(E,) = o,
t-hen "
P{an infinite number of the E, occur} = 1.

Proof

Cs

£}
= lim P( Ei)

i [1-r(=)]

P{an infinite number of the E, occur} = P{ lim

n—wo |

s



1.2 RANDOM VARIABLES ' 5

Now,
P(E}) (by independence)

GER

(1 - P(E}))

s g:ja

IA
s

e PE)  (by the inequality 1 — x < e™%)

= exp(—-z P(Ei))
=0 since i P(E;) = oo forall n.

Hence the result follows.
Example 1.1(c). Let X,, X,, ... be independent and such that
P{X,=0}=1/n=1-P{X,=1}, n=1.

Ifwe let E, = {X, =0}, then as } ., P(E,) = oo it follows from Proposition 1.1.3 that £,
occurs infinitely often. Also,as Y%, P(ES) = oo it also follows that E, also occurs infinitely
often. Hence, with probability 1, X, will equal D infinitely often and will also equal 1 infinitely
often. Hence, with probability 1, X, will not approach a limiting value as n — <.

1.2~ RANDOM VARIABLES

Consider a random experiment having sample space S. A random vartable

is a function that assigns a real value to each outcome in S. For any set of real
numbers A, the probability that X will assume a value that is contained in the
set A is equal to the probablllty that the outcome of the experiment is contained
in X"'(A). That is,

P{Xe A} = P(X"Y(4)),

where X ~*(A) is the event consisting of all points s € § such that X(s) e A.
The distribution function F of the random variable X is deﬁned for any. real
number x by

F(x) = P{X < x} = P{X e (~— 0, x)}.
We shall denote t — F(x) by F(x), and so
F(x) = P{X > x}.

A random variable X is said to be discrete if its set of possible values is countable.
For discrete random variables,

F)= 3 P{X =)
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A random variable is called continuous if there exists a function f{x), called the
probability density function, such that )

P{X isin B} = [ f(x) dx

for every set B. Since F(x) = j’i < J(x)dx, it follows that

d
S = Ix F(x).

The joint distribution function F of two random variables X and Y is defined by
F(x,y) = P{X <x, Y <y}
The distribution functions of X and Y,
Fx(x)=P{X < x} and Fy(x)=P{Y<x},

can be obtained from F(x, y) by making use of the continuity property of the
probability operator. Specifically, let y,, n > 1, denote an increasing sequence
converging to co. Then as the events {X < x, Y < y,}, n 2 1, are increasing and

1liin{X5x,Y,<.y,}’== UX<sx,Y<y}={X<x]

n—ao n=1
it follows from the continuity property that
lim P{X <x, Y <y} =P{X <x},

or, equivalently,
Fy(x) = im“F(x, y).
_ Similarly, T
Fy(y) = lim F(x,y)..

The random variables X and Y are said to be independent if
F(x, y) = Fy(x)Fy(y)
for all x and y.

The random variables X and Y are said to be jointly continuous if there exists
a function f(x, y), called the joint probability density function, such that

P{(XisinA, Yisin B} = [, [, f0x, y)dydx

for all sets A and B.
The joint distribution of any collection X, X,, ..., X, of random variables

is defined by
Flxy, ... x)=P{X, <x,..., X, <x,).

Furthermore, the n random variables are said to be independent if

F(xy,. - - Xp) = Fx,(x,)Fx,(x3) - - - Fx (x,),
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where
Fy(x) = lm F(x;,...,x,).
g

1.3 EXPECTED VALUE
The expectation or mean of the random variable X, denoted by E[ X ], is defined by
(1.3.1) E[X] = [ xdF(x)

f _:xf (x)dx if X is continuous

- Y xP{X =x} if X is discrete

provided the above integral exists.
Equation (1.3.1) also defines the expectation of any function of X, say h(X).
Since h{X) is itself a random variable, it follows from (1.3.1) that

E[h(X)] = [ xdF,(x)

where F, is the distribution function of h(X ). Howe\fer, it can be shown that this
is identical to {*, h(x)dF(x). Thatis,

(13.2) E[h(X)] = [ h(x)dF(x)

The above equation is sometimes known as the law of the unconscious statistician
{since statisticians have been accused of using the identity (1.3.2) without realizing
that it is not a definition]. '
The variance of the random variable X is defined by
Var X = E[(X - E[X])*]
= E[X*] - E¥{X]
Two jointly distributed random variables X and Y are said to be uncorrelated
if their covariance, defined by
Cov(X,Y) = E[(X — EXXY — EY)]
=E[XY] - E[X]E[Y]
is zero. It follows that independent random variables are uncorrelated. However,
the converse need not be true. (The reader should think of an example.)

An important property of expectations is that the expectation ofa sumofrandom
variables is equal to the sum of the expectations.

x,] - Z, E[X,].

Ma

1

(1.3.3) E[
i
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The corresponding property for variances is that

(1.3.9) Var[ Z X,] = Z Var(X;) + 2 ZZ Cov(X;, X).
i=1 i=1 . i<j -

Example 1.3(a). The Matching Problem. At a party n people put their hats in the
center of a room where the hats are mixed together. Each person then randomly selects
one. We are interested in the mean and variance of X—the number that select their own hat.

To solve we use the representation

X=X, +X;+ "+ X,
where *
X — {l if the ith person selects his own hat
é

T |0 otherwise.

Now, as the ith person is equally likely to select any of the n hats, it follows that P{X; = 1} =
1/n, and so

E[X]=1/n,
Var(X1)=1(l -1)="', L
n n n
Also
N COV(Xi, Xj) = E[Xin] - E[Xl]E[XJ].
Now,
1 if the ith and jth men both select their own hats
XX;= o
(0 otherwise, -
and thus
E[X,Xj] =P{X‘= l,XJ= l}
__1 1
Tan-1
Hence,

Cc.)v(X X)———--—1 [2— ! 7
P wn—1) \n)  nin-1)
Therefore, from (1.3.3) and (1.3.4),
- E[X]=1
and
n-1 n 1
Var(X)=—— + 2 e PE——
Vel = (2>n2(n— 1
-1 . .

Thus both the mean and variance of the number of matches are equal to {. (See Example

1.5(e) for an explanation as to why these results are not surprising.)

Example 1.3(D). Some Probability Identities. let A, A;, ..., A, denote events and
define the indicator variables I,,j=1,...,n by
. [z {1 if A; occurs
P7l0 otherwise.
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Letting
n
= Z i
i=1

then N denotes the number of the A;, 1 < j < n, that occur. A useful identity can be ob-
tained by noting that
- 1 ifN=0
3. 1-1V= .
133 ( ) {O ifN>0.

But by the binomial theorem

N
1.3.6) a-1r=y (N) 1y
i=o \ !

since (':l) =O0wheni>m.

Hence, if we let
[ = fN>0
B o ifN=0,

1o1=i('\.')(—1r'
i=o \!
or ’

(1.3.7) I'= 2": (7)(—1)‘”.

i=1

then (1.3.5) and (1.3.6) yield

" Taking expectations of both sides of (1.3.7) yields

(138) E[I]=E[N] - E[( )] Foo (= 1)"“5[(1:)].

However,
E[I]=P{N>0}
= P{at least one of the 4, occurs}
(4
1
and

E[N}= EL; I ,.:| = ;1 P(4),
E [(1:):, = Efnumber of pairs of the 4, that occur]

=E [;z 1,11]

i<j

=YY E[11]

i<j

=32 P(4,4),

i<j



