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Preface

This Student Solutions Manual contains strategies for solving and solutions to selected exercises in the text Single
Variable Calculus: Early Transcendentals, Fourth Edition, by James Stewart. It contains solutions to the odd-numbered
exercises in each section, the review sections, the True-False Quizzes, and the Problem Solving sections, as well as
solutions to all the exercises in the Concept Checks.

We use some non-standard notation in order to save space. If you see a symbol which you don’t recognize, refer to
the Table of Abbreviations and Symbols on page iv.

This manual is a text supplement and should be read along with the text. You should read all exercise solutions in
this manual because many concept explanations are given and then used in subsequent solutions. All concepts necessary
to solve a particular problem are not reviewed for every exercise. If you are having difficulty with a previously covered
concept, refer back to the section where it was covered for more complete help.

A significant number of today’s students are involved in various outside activities, and find it difficult, if not
impossible, to attend all class sessions; this manual should help meet the needs of these students. In addition, it is
our hope that this manual’s solutions will enhance the understanding of all readers of the material and provide insights
to solving other exercises.

We appreciate feedback concerning errors, solution correctness or style, and manual style. Any comments may be sent
directly to jcole@an.cc.mn.us, or in care of the publisher: Brooks/Cole Publishing Company, 511 Forest Lodge
Road, Pacific Grove, CA 93950.

We would like to thank Andrew Bulman-Fleming, for typesetting the manuscript; Brian Betsill, Stephanie
Kuhns, and Kathi Townes, of TECH-arts, for their production services; and Carol Ann Benedict, of Brooks/Cole
Publishing Company, for her patience and support. All of these people have provided invaluable help in creating this
manual.

Jeffery A. Cole
Anoka-Ramsey Community College

James Stewart
McMaster University

Daniel Drucker
Wayne State University

Daniel Anderson
University of Iowa



Abbreviations and Symbols

CD
CU

FDT

IP

VA

I~ [I=

||

le

concave downward
concave upward

the domain of f

First Derivative Test
horizontal asymptote(s)
interval of convergence
inflection point(s)
radius of convergence

vertical asymptote(s)
indicates the use of I’Hospital’s Rule.
indicates the use of Formula ; in the Table of Integrals in the back endpapers.

indicates the use of the substitution {# = sinx, du = cosx dx}.

indicates the use of the substitution {# = cosx, du = —sinx dx}.
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Functions and Models

3’;1 Four Ways to Represent a Function

20 N o S

In exercises requiring estimations or approximations, your answers may vary slightly from the answers given here.

1.

11.

13.

(a) The point (—1, —2) is on the graph of f, so f (—1) = —2.

(b) When x = 2, y is about 2.8, so f (2) =~ 2.8.

(¢c) f(x) =2isequivalentto y =2. Wheny =2, wehavex = -3 andx = 1.
(d) Reasonable estimates for x when y = 0 are x = —2.5 and x = 0.3.

(e) The domain of f consists of all x-values on the graph of f. For this function, the domain is —3 < x < 3. The
range of f consists of all y-values on the graph of f. For this function, the range is —2 < y < 3.

(f) As x increases from —1 to 3, y increases from —2 to 3. Thus, f is increasing on the interval [—1, 3].

From Figure 1 in the text, the lowest point occurs at about (¢, a) = (12, —85). The highest point occurs at about
(17, 115). Thus, the range of the vertical ground acceleration is —85 < a < 115. In Figure 11, the range of the
north-south acceleration is approximately —325 < a < 485. In Figure 12, the range of the east-west acceleration is
approximately —210 < a < 200.

Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [—3, 2] and the
range is [—2, 2].

. No, the curve 1s not the graph of a function since for x = —1 there are infinitely many points on the curve.

. The person’s weight increased to about 160 pounds at age 20 and stayed fairly steady for 10 years. The person’s

weight dropped to about 120 pounds for the next 5 years, then increased rapidly to about 170 pounds. The next 30
years saw a gradual increase to 190 pounds. Possible reasons for the drop in weight at 30 years of age: diet,
exercise, health problems.

The water will cool down almost to freezing as the ice melts. Then, T4
when the ice has melted, the water will slowly warm up to room
temperature. \
0 [
Of course, this graph depends strongly on the geographical location! T A

N

midnight no;:m !




2 0O CHAPTER1 FUNCTIONS AND MODELS

15.  Height 4 17. (a) X |
of grass
. P 1 d
t : > :312) L
Wed. Wed. Wed. Wed. Wed.! )
- = |
SRR

(b) T (11) &~ 59°F

19. f(x) =2x2+3x —4,50 £(0) =2(0)>+3(0) —4 = —4,
f(2) =22 +3@2)—4=10, f/(+2) =2(+/2)* +3(W2) — 4 =32,
fA+v2) =201+ VD +3(1+ VD) —4=2(142+2v2) +3+3v2-4=5+7V2,
f(=x) =2(—x)*>4+3(—x) — 4 =2x% — 3x — 4,
FE+D) =26+ 4+3Gx+1)—-4=2(x?>+2x+1)+3x+3 -4 =22 +Tx +1,
2f (x) =2 (2x> +3x — 4) = 4x? + 6x — 8, and
f(2x) =2(2x)> +3(2x) —4 =2 (4x%) + 6x — 4 = 8x? + 6x — 4.

1. f(x)=x—x2,50 fR+h) =2+h—Q2+h)?=2+h—4—4h—h? = — (h® +3h +2),
f+h=x+h—(Gx+h?*=x+h—x%=2xh—h2, and
fG+h)—f(x) x4+h—x*—2xh—h*—x+x*> h—2xh—h?

— =1—-2x —h.
h h h
x+2 . ) e &
23. f(x)= - is defined for all x except whenx“ -1 =0 < x =1 orx = —1, so the domain is
{x | £ =1}

25. g(x) = Jx2 — 6x is defined when 0 < x2 — 6x = x (x—6) & x>6o0rx <0,sothe domain is
(—o0, 0] U [6, 00).

21. f(t) = ~/t — 1 is defined for every ¢, since every real number has a cube root. The domain is the set of all real
numbers, R.

29. f (x) = 3 — 2x. Domain is R. i




SECTION 1.1 FOUR WAYS TO REPRESENT AFUNCTION 0O 3

31. g (x) = +/x — 5 is defined whenx —5 > O or x > 5, so the domain is r4
[5,00). Sincey =+/x—35 = y2=x—5 = x=y2+5, /

we see that g is the top half of a parabola.

0 5 X
x ifx >0 4
33. G (x) = |x| + x. Since |x| = _ we have
—x 1Ifx <0
x+x ifx>0 2x ifx >0
G (x) = | = . ,
—x+x ifx <0 0 ifx <0 0 %
Domain is R. Note that the negative x-axis is part of the graph of G.
X x/x ifx>0 1 ifx>0 y
3. f(x)= = _ = ;
x| x/(=x) ifx <0 -1 ifx <0 | -
Note that we did not use x > 0, because x # 0. Hence, the domain of [ is _
(x | x # 0}. 0 . X
X ifx <0 39, 1 x+2 ifx < -1
37. X) = I X )=
/&) x+1 ifx>0 ) x? ifx > —1
Domain is R. Domain 1s R.

=Y
=Y

/0

41. Recall that the slope m of a line between the two points (xy, y1) and (x2, y») iIsm = sz :i}: and an equation of the
line connecting those two points is y — y1 = m (x — x1). The slope of this line segment is 4__6(__;) = % SO an
equation is y — 1 = —£ (x + 2). The functionis f (x) = —¢x — 3, =2 < x < 4.

43. We need to solve the given equationfory. x + (y = 1)’ =0 = @ -1 =—-x = y—-1l=+,/—x =

= 1 & 4/—x. The expression with the positive radical represents the top half of the parabola, and the one with the
negative radical represents the bottom half. Hence, we want f (x) =1 — /—x,x < 0.

45. For —1 < x < 2, the graph is the line with slope 1 and y-intercept 1, that is, the line y = x + 1. For 2 < x < 4, the
graph is the line with slope —% and x-intercept 4, so y = —% (x —4) = —-%x + 6. So the function is

x + 1 f—l1<x<2
f(x)=[ “3x+6 if2<x <4
4]. Let the length and width of the rectangle be L and W. Then the perimeter is 2L + 2W = 20 and the area is
A = LW. Solving the first equation for W in terms of L gives W = - ; 2L = 10 — L. Thus,

A(L) =L (10— L) = 10L — L?. Since lengths are positive, the domain of 4 is 0 < L < 10. If we further restrict
L to be larger than W, then 5 < L < 10 would be the domain.
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49. Let the length of a side of the equilateral triangle be x. Then by the Pythagorean Theorem, the height y of the

2
triangle satisfies y? + (%x) = x2, so that y = %—g.x. Using the formula for the area A4 of a triangle,

A = 1 (base) (height), we obtain 4 (x) = 3 (x) (Jzéx) — aﬁixz, with domain x > 0.

51. Let each side of the base of the box have length x, and let the height of the box be 4. Since the volume 1s 2, we
know that 2 = hx?, so that h = 2/x2, and the surface area is S = x2 + 4xh. Thus,
S (x) = x? + 4x (2/x?) = x* + 8/x, with domain x > 0.
53. The height of the box is x and the length and width are L =20 — 2x, W = 12 — 2x. Then V' = L Wx and so
V (x) = (20 — 2x) (12 — 2x) (x) =4 (10 — x) (6 — x) (x) = 4x (60 — 16x +x2)
= 4x3 — 64x2 + 240x

The sides L, W, and x must be positive. Thus, L >0 & 20-2x>0 & x<10;w>0 &
12—-2x>0 & x <6;andx > 0. Combining these restrictions gives us the domain 0 < x < 6.

55. (a) R(%) 4 (C) T (in dollars)4
13T o 2500 +
10 T o ]
1000 T
° : > i + >
0 10,000 20,000 I (in dollars) 0| 10,000 20,000 30,000 /(indollars)

(b) On $14,000, tax is assessed on $4000, and 10% ($4000) = $400.
On $26,000, tax is assessed on $16,000, and 10% ($10,000) + 15% ($6000) = $1000 + $900 = $1900.
97. (a) Because an even function is symmetric with respect to the y-axis, and the point (5, 3) is on the graph of this

even function, the point (=35, 3) must also be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5, 3) is on the graph of this odd
function, the point (—5, —3) must also be on its graph.

1 ]
(=x)* 2
=x"% = f (%)

so f 1s an even function.

61. / (—x) = (—x)?> + (—x) = x2 — x. Since this
is neither f (x) nor — f (x), the function f is
neither even nor odd.

63. /(—x) = (—x)’ = (=x) = —x> +x
=-(x"—x)=—f &)

/ |\ so f is odd.

T P
0] | X

59. f (—x) = (—x) =

Vi

-V




SECTION 1.2 MATHEMATICALMODELS O 5

=2 Mathematical Models

R R PR RS s

1. (a) f (x) = J/x is aroot function.

(b) g (x) = +/1 — x2 is an algebraic function because it is a root of a polynomial.

(c) h (x) = x° + x* is a polynomial of degree 9.

x% +1
x3 +x

is a rational function because it is a ratio of polynomials.

d)rx)=

(e) s (x) = tan 2x is a trigonometric function.

(f) t (x) = log;o x is a logarithmic function.

3. We notice from the figure that g and /4 are even functions (symmetric with respect to the y-axis) and that f is an
odd function (symmetric with respect to the origin). So (b) [y = x°] must be 1. Since g is flatter than / near the
origin, we must have (c) [y = x8] matched with g and (a) [y = x?] matched with A.

5. (a) An equation for the family of linear (b) f(2) = 1 means that the point (2, 1) is on the graph of 1.
functions with slope 2 is We can use the point-slope form of a line to obtain an
y = f (x) = 2x + b, where b is the equation for the family of linear functions through the point
y-intercept. (2,1). y—1=m (x — 2), which is equivalent to
y = mx + (1 — 2m) in slope-intercept form.
yab=3b=0
b=-—1
YA m=1
m=—1
y=2x+b
(2.1) m=0
; :
X
y—1=m(x—2)

(c) The slope m must equal 2, so the equation in part (b), y = mx + (1 — 2m), becomes y = 2x — 3. It is the only
function that belongs to both families.

1. (a) F A

(b) The slope of % means that F' increases % degrees for each

100, 212 . : .
( : increase of 1°C. (Equivalently, F increases by 9 when C

increases by 5 and F decreases by 9 when C decreases by 5.)
The F-intercept of 32 is the Fahrenheit temperature

corresponding to a Celsius temperature of 0.

F=3C+32

32

oY

(—40,—40)
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> —T 80— 70 10 1
— = = —. Soa
N> — Ny 173 — 113 60 6

linear equationis 7 —80 =t (N —173) & T-80=i:N-182 o T =N+ [ =5116].

9. (a) Using N in place of x and T in place of y, we find the slope to be

(b) The slope of % means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of
cricket chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an
increase of 1°F.

(c) When N = 150, the temperature is given approximately by 77 = -é— (150) + % = 76.16°F =~ 76°F.

change in pressure 4.34

10 feet change in depth 10
(d, P) = (0, 15), we have P — 15 = 0.434(d — 0) & P = 0.434d + 15.

11. (a) We are given = (0.434. Using P for pressure and d for depth with the point

(b) When P =100, then 100 =0.434d + 15 & 0.434d =85 & d =~ 195.85 feet. Thus, the pressure is
100 Ib/in? at a depth of approximately 196 feet.

13. (a) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form
f (x) = acos (bx) + ¢ seems appropriate.

(b) The data appear to be decreasing in a linear fashion. A model of the form f (x) = mx + b seems appropriate.

Some values are given to many decimal places. These are the results given by several computer algebra systems — rounding is left to the
reader.

5. @) (b) Using the points (4000, 14.1) and (60,000, 8.2), we obtain

. k 2—14.1
? * e . y—14.1 = 60?000 — 2000 (x —4000) or, equivalently,

y & —0.000105357x + 14.521429.

15

_(b)
Fi

A linear model does seem appropriate. ()

()K ‘ : ' ' —— 61,000

g—————————— 61,000

(c) Using a computing device, we obtain the least squares regression line y = —0.0000997855x + 13.950764.

(d) When x = 25,000, y & 11.456; or about 11.5 per 100 population.
(¢) When x = 80,000, y & 5.968; or about a 6% chance.

(f) When x = 200,000, y is negative, so the model does not apply.
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17. @) 49 (b) 20 (ft)
a

189610[: ------------------------ / 2000 (year) 1896, Moottt + 2000 (year)

A linear model does seem appropriate. Using a computing device, we obtain the least squares
regression line y = —158.2403249x + 0.089119747, where
x is the year and y is the height in feet.

(c) When x = 2000, y = 20.00 ft.

(d) When x = 2100, y =~ 28.91 ft. This would be an increase of 9.49 ft from 1996 to 2100. Even though there was
an increase of 8.59 ft from 1900 to 1996, it is unlikely that a similar increase will occur over the next
100 years.

19. 6000 (millions) Using a computing device, we obtain the cubic function

y = ax3 + bx? + cx + d with a = 0.00232567051876,
b = —13.064877957628, ¢ = 24,463.10846422, and

d = —15,265,793.872507. When x = 1925, y ~ 1922
(millions).

W pesimatitatioits / 2010 (year)

33 New Functions from Old Functions

1. (a) If the graph of f is shifted 3 units upward, its equation becomes y = f (x) + 3.

(b) If the graph of f is shifted 3 units downward, its equation becomes y = f (x) — 3.

(c) If the graph of f is shifted 3 units to the right, its equation becomes y = f (x — 3).

(d) If the graph of f is shifted 3 units to the left, its equation becomes y = f (x + 3).

(e) If the graph of f 1s reflected about the x-axis, its equation becomes y = — f (x).

(f) If the graph of f is reflected about the y-axis, its equation becomes y = f (—x).

(g) If the graph of f is stretched vertically by a factor of 3, its equation becomes y = 3 f (x).

(h) If the graph of f is shrunk vertically by a factor of 3, its equation becomes y = % [ (x).

3. (a) (graph 3) The graph of f is shifted 4 units to the right and has equation y = f (x — 4).
(b) (graph 1) The graph of f is shifted 3 units upward and has equation y = f (x) + 3.

(c) (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation y = % f(x).
(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the x-axis. Its equation is
y=—J(x+4).

(e) (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2. Its equation is
y=2f(x+6).
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5. (a) To graph y = f (2x) we shrink the graph of (b) Tography = f (%x) we stretch the graph of f
f horizontally by a factor of 2. horizontally by a factor of 2.
S 77 S YA

| -
| 0 X

(d) To graph y = — f (—x) we reflect the graph of f
about the y-axis, then about the x-axis.

=Y

7. The graph of y = f (x) = +/3x — x2 has been shifted 4 units to the left, reflected about the x-axis, and shifted

downward 1 unit. Thus, a function describing the graph is

y= -l flx+4) -1

reflect shift shift
about 4 units 1 unit
X-axis left down

This function can be written as

y=—f G+ —1=—/3(x+4) - (x +4)? -1

= —3x+ 12— (x2+8x +16) — 1 = —/—xZ —5x — 4 — |

9. y = —1/x: Start with the graph of y = 1/x and reflect about the x-axis.

YA A

y

1 1
Y=x Y="x
jo x or*}‘

11. y = tan2x: Start with the graph of y = tan x and compress horizontally by a factor of 2.

YA y4 y=tan2x

(ST |
N—

—

)
Lt /
=

SE

y = tan x




