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PREFACE

"JHE ordinary representation theory of a finite group was largely

developed by Frobenius, Burnside and Schur, and the modular theory
by Dickson, Brauer and Nesbutt. In the first chapter of this book we
shall try to provide the background for those parts of the subject
which are necessary in the sequel. With regard to the ordinary theory,
a fairly complete though brief account of these ‘classical’ ideas is given
in Part 1. The case of the modular theory is somewhat dificrent, since
new and fundamental developments are still in progress. Our purpose
in Part 2 is to present as clear a picture as possible of a complicated
piece of mathematics. Though proofs are omitted in §§ 12.5 and 12.6,
corresponding theorems will be proved later on for &, by quite different
methods and in a more explicit form. Alternative approaches to these
general ideas are available, and we have chosen that due to Osima and
Nagao in which the ordinary and modular theories appear as different
aspects of an integrated whole.

The ordinary representation theory of the symmetric group &, was
first developed by Frobenius. Just a year later (1900-1) an independent
approach was given by Alfred Young which was based on a study of
the group algebra and its idempotents. Young was primarily interested
in applications to projective invariants and his work on representation
theory: is scattered through a long series of papers. ID. E. Rutherford
has collected together this material and the reader is referred to his
Substitutional Analysis for an account of Young's work. Youngls
Fundamental Theorem (2.17) giving the actual matrices which generate
any given irreducible representation is quoted without procf. as is also
his substitutional equation (2.23) which leads to the definition of the
raising operator. From this point on the presentation is self-cortained.

The 1teresting aspect of the theory is the crucial role played at every
stage by the Young diagram [1]. One may legitimately ask why so
many concepts, often very involved when stated in genera! terms,
become so simple when applied to €, and interpreted with refereace to
{4]. That this 1s so provides the chief reason for the writing of the present
book, since it is conceivable that a corresponding approach through
the group algebra may lead to a simplification and clarificatior of the
general theory., Some slight progress along these lines has already been
made. Fundamenially, the problem is to derive the representation
theory of a given group in terms of that of suitably chosen subgroups.
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In the case of &, such suitable sub-groups are easily recognized to be
of the form

GMX@&:X ° oo Xglh, 'Z;Li:n-

‘Many authors havé contributed to the theory described here as a
glance at the Bibliography will show. Particular mention should be
made of the work of J. S. Frame, D. E. Littlewood, Masaru Osima and
R. M. Thrall. Notes on the various sections with appropriate references
will be found at the end of the book, but the method of presentation is
often changed in an attempt to coordinate the work of different authors.
The greater part of the material in Chapters VII and VIII is published
here for the first time and is based on theses by O. E. Taulbee and
Diane Johnson. The ideas are complicated and it may be that further
wark will lead to significant simplifications, but the general pattern of
development is clear. | -

The chief feature of this account of the representations of &, is the
use made of Young’s raising operator which plays a major role in
Chapters II and III and again in Chapters VI, VII and VIII. That it is
possible to express the reduction of the appropriate permutation
representations of S, in an explicit manner seems to be largely respon-
sible for the completeness of the theory.

In conclusion, I would like to express my thanks to Professor J. S.
Frame, Professor Masaru Osima, and to my colleague Professor A. J.
Coleman for reading the manuscript and making many useful sugges-
tions. I am particularly indebted to Professor Hirosi Nagao for his
friendly interest and valuable criticism of Chapters I, VII and VIIIL

But above all I am indebted to my wife for her continued encourage-
ment over many years.

G. DE B. ROBINSON
University of Toronto
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CHAPTER ONE

THE ORDINARY AND THE MODULAR
REPRESENTATION THEORY OF A FINITE GROUP

PART 1: THE ORDINARY REPRESENTATION THEORY

Introduction. We propose to set out here those parts of the representa-
tion theory of a finite group over the complex field which are essential
in what follows. While such a survey is necessarily incomplete, two
aspects of the theory can be emphasized:

(@) 1t is important to make clear just how far character theory goes:
that it is a class theory, providing an explicit criterion of irreducibility
" but no information concerning the irreducible representations beyond
equivalence.

(b) The subgroup structure of a finite group ¥ is largely untouched
as yet by character theory. Yet certain connections can be made and
Frobenius’ reciprocity theorem is vital in this regard. The fact that
we have so little knowledge of the irreducible componcnts of a permu-
tation representation of ¢ stands out.

The significance of these deficiencies of the general theory 1s greatly
clarified by a study of the representation theory of the symmetric group
©,. First developed by Alfred Young, it has been extended by many
authors and these developments are brought together in this book with
 the view of describing a pattern to which any generalization of Young’s
theory must conform.

11.1 Permutation representations. Historically, the notion of a group
arose early in the 19th century as a group of permutations on the roots
of an algebraic equation. In this context Galois showed its usefulness
in providing a criterion for the solvability of an equation by radicals.
It was not till 1854 that Cayley defined an abstract group as a set ¢ of
elements G; subject to a law of combination which we may take to be
multiplication and such that:

(a) for every G,, G; in ¥ there exists an element G, in ¥ such that

G,G;=Gy;

(b) G(G;Gp= (GiGI)Gk (the associative law);
(c) there exists an identity G, (=1)in ¥ such that G\/I=G,;=1G;;
(d) for each G, there exists an inverse G;”' in ¢ such that

GiG;-l =I=G‘-IG‘ .
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These simple properties find their realization in many different
domains. For example: (i) the ordinary integers of arithmetic form a
group with respect to addition, with zero as the identity element; (ii) the
rotations and translations in a plane form a group as do the symmetries
of a sphere (which leave the centre fixed). In what follows we shall
always assume that the number of elements in ¥ is finite and we shall
call this number the order g of 4. In this section we propose to reverse
the historical procedure and see how, with each element G; of 4, we
may associate a permutation P, such that P.,P;=P, as in (a). Such a set
of permutations is said to form a permutation representation of 4.

To this end consider a subgroup # of ¢ of order 4. If we gather
together those elements of 4 which may be written in the form HG,,
where H is any element of # and G, is fixed, we may denote them
H°G;, called a right coset of #. Any two such cosets of # are entirely
distinct or coincide, so that we may write -

11.11 G=H+HGCy+HG;3+...+H#GC

me

with n=g/h. It follows readily that the corresponding left cosets
G; o# are also distinct so that -

11.12 G=H+G; ' H#+G;'#+... +G .

Now let us multiply every coset G, in 11.11 on the right by some
element of 4. The effect will be to leave #G, unchanged or to change
it into some other coset, thus yielding a permutation of the n cosets
which we may denote by

G [* #G. ...#6G, \ (G,
HG,#G,G,...#G,G)~\#6G)

HG, HGG \ _[HG,
HGG) \HGGG' | \ #GGG )’
these permutations form a representation 4* of 4.

Of course it may happen that #G,G=2G, for all i, in which case
GGG ! € # and # contains a largest subgroup " which is normal in
¥. The mapping ¥ — 4¥ is a homomorphism with % isomorphic to
the factor group 4 | A"

If we multiply the cosets in 11.12 on the left by G~ ! we similarly
obtain a permutation

e # G ... G \ ( G
G '\#,G'G;#,...G" G, '# ) T\G 16, )

Since
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and so again a representation of 4. In view of the isomorphism

£ 13 G\ ( #6G \ [ #G\ [ G 'w#
S #6G, )\#6G6)\Grw# ) \G 6w

these right and left permutation representations are formally equi-

valent. Just as we replaced each group element by its inverse, and the
coset #G; by G; ' in 11.13, so we may replace # by any conjugate
subgroup G~ !2#G and arrive at a formally equivalent permutation
representation. Thus we may speak of the permutation representation
%* of % induced by the subgroup #.

If ¢ =1 we have a particularly important permutation representation
of ¥ of degree g called the regular representation, since no symbol
remains fixed except under the identity and every cycle in any permuta-
tion is of equal length. The left regular representation has the remark-
able property of containing all permutations which commute with every
permutation of the right regular representation and vice versa, since

G G\ ( G \ (G YG
GG, \G;'G) . G;‘GGJ_ G;'GN\GG;)"

There is a second way of constructing a permutation representation

of ¢ which is important in the sequel. If G™'o¢'G =2 then the totality

of such elements constitutes the normalizer A (X) of A and it can
easily be seen that the number of distinct conjugate subgroups of A is
equal to the index of /(") in 4. If we now transform these conjugate
subgroups by G they will be permuted amongst themselves according

to the permutation
. GG,
GG 'AHG)G) -

-~

Again, such permutations form a representation of ¥ which is equi-
valent to 4% if we set # =A(A"). If A is normal in ¢ (e.g. if H =1)
this representation by transformation collapses. However, in the case
of the symmetric group & we shall always be considering subgroups
of the form

A =C,xC x...xC, p+q+...+r=n,

where x indicates the ‘direct product’ and each factor affects different
symbols. By keeping track of the order of the factors and the symbols
involved we can obtain a permutation representation equivalent to %,
These ideas will be developed in detail in the following chapter.
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Of course, one can conclude from these constructions that every

finite group is isororphic to a subgroup of &, for some value of n, but |

this does not seem to be a very fruitful line of thought.

From'any permutation representation * we obtain immediately a
linear representation of ¥ by permutation matrices (G) having one 1 in
each row and column and zeros elsewhere. The rule for constructing
(G) depends on our convention for multiplying permutations. Since

permutations are operators we shall multiply them from right to lefr and

place 1 at the intersection of the ith row and jth column of (G), when

HGG=G;. One may, however, muitiply permutations from left to

right; with such a convention the matrix (G) would be replaced by its
transpose (G)’, where

(@ =@ =(@G).

The number of 1I’s in the diagonal of (G) is called the permutation
character of G and written y*(G). If g; is the number of conjugates
of G in ¢ and g¥ the number of these that lie in J¢:

11.14 r*(G) = =25,

Proof. For each 1 in y*(G) we must have #G,G=3#G, so that
GGG lesr. If G, tuns over all elements of ¥ we obtam a given conju-
gate in J¢ counted gjg. times: but there are g suci conjugates in
sO we must multlply g/gc by g&. On the other hand if G,GG; es# so
also (HG)G(HG,)™ ‘e for every Hes#; if each such solution to the
problem is to be counted once only we must divide gg¥/g; by h,
proving the theorem. :

We state the following two relations between permutation characters:

11.15 Y x¥(G) = g,
o

11.16 2. 0(8) X (G) = 1,

where ¢ is the number of double cosets in the decomposition
g =.#f+3f62f+..+.#63{.

It is an interesting and easy exercise to construct the proof of 11.15 but
that of 11.16 is more difficult.

11.17 Example. By way of illustration we take 4 =&, and llSt below a
representative set of subgroups.

s T T e —— e e e e a—

S e,
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TABLE I
H Subgroup h
4 i 1
X, I, (12) 2
#, 1, (12) 34) 2
Xy I, (123), (132) 3
H I, (1324), (12) 34), (1423) 4
H 6 I, (12) (34), (14)(23), (13) (24) 4
H 1, (12), (34), (12)(34) 4
Hg I, (12), (13), (23), (123), (132) 6

(13) (24), (1324), (1423) 8
H o A | 12
H S, 24

In particular, we may write the cosets of the subgroup 4, in the form
11.171 . Sy = H g+ H o (23)+ 5, (24).

Since )¢ = H# ¢ which is normal in S, the permutation representation
G4 (cf. Table II) is isomorphic to S, / #; ~ S,. Denoting the three
cosets of o4 by b, ¢, d respectively, we have

| 019] IIOO
(23) - (be) ~ [1 0 O], (34)-—r(cd)~[-0 0 1],
' 001 | 010

whxch generate the representation.

The permutation characters are listed in Table II below, in whlch 9.
is used as an abbreviation for ¥¥,

TasLe If—y*/

} [ -
Class (14) 2, 1%) | 2% (3, 1) 4)
g ! 1 6 3 8_ 6
g 24 B . . .
%, 12 2 . . .
9, 12 . 4 . .
g, 8 : ; 2 :
4, 6 . 2 . 2

@ 6 . 6 . .
. ¢ 2 2 | |
@, 4 2 . 1 .
@, 3 1 3 . 1
b0 7 : ? 2 2 .
@, ] 1 1 1 1
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The headings indicate the cycle structure of each class of permutations
followed by the number g; of elements in the class. Using 11. 14 it is
easy to check the construction of the table. \

11.2 The group algebra over a field F. If we take the elements G,(=1),
Gy, . .., G, of the group ¥ as basis elements of a group algebra of with
coefﬁcnents in a given field F, we can deﬁne addition and multlphcatlon
in the algebra as follows:

(2 xG)+ (X J’th) > (x;+y)G,
(X xG) X »G) =Y (x)GG;

Such a éroup algebra is clearly associative with a unity element. If we
denote any element of & by |

11.21

g
11.22 a= ) xG,
i=1
then
g g '
11.23 a.G =) 5;G Gi.a= ) r;Gj,
j=1 . Jj=1

~and the matrices (s;;) and (r;;))" constitute the left and right regular
representations of d where (r;;)" denotes the transpose of (r;). A
different choice of basis elements leads to an equivalent regular repre-
‘sentation. In general, if the two regular representations are equivalent
the algebra is called a Frobenius algebra; this condition is certainly
satisfied in the case of a group algebra, since

g
G‘"l L d = z SuG;l
for a choice of new basis elements G;! (i=1,2,.. ., 2).
The centre of an algebra .« is made up of all those elements which
commute with every element of &f. To describe such elements, let us
denote the classes of conjugate elements of 4 by

Cl (=I)s Cz: e s vy Cka

where there are g; elements in C; and g=g,+g,+...+g. No con-
fusion will arise if we use the same symbol C,; to denote the sum of
conjugate elements in 7.

11.24 The necessary and sufficient condition that an element a belongs
to the centre of </ is that it have the form

k
a = Z in,.

i=1
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Proof. If ab=ba for all b then G,a=aG, for all i, so all conjugates of a
given group element must appear in a with the same coefficient. Clearly,
the condition is sufficient. |

Multiplication of the sets C,is also important, and a similar argument
leads to the relation

k
11.25 C‘Cm = C,,,C, = Z c,,,,,,c,,.
n=1

where the c,,,,=c,,, are integers.

If we set all x;=0 in 11.22 we obtain the zero element 0 of s£. If
a*=0 for some index » then a is nilpotent. On the other hand, an
element a’ of & is said to be properly nilpotent if aa’, and so a'a, is
nilpotent for every a in &/. Thus the properly nilpotent elements of &
form an ideal of s called the radical. 1t is customary to denote the
radical by A" so that the quotient algebra & / A is semi-simple, 1i.e.
can be written as the direct sum of simple algebras o/,

AN ~ b +ly+. ..

11.26 Example. Consider the algebra o of all 3 x 3 matrices (a;;) with |

a12=ay3=a,3=0, the remaining coefficients being arbitrary elements
of the field F. Then

0 0 0 0 0 0
N az;; 0 0], N0 0 0],
az; az, 0 a; O 0

where 472 is defined to be the set of all products of any two elements
of V. A [N ~ o +of,+ 3, where |

dgy:ifag 0 07, [0 0 07, #5:[0 0 07
0 0 o] 0 a o] 0 0 0]
0 0 0 0 0 0 0 0 a

In this case #"°=0, i.. the product of any element of 4 by any
element of 4% must be the zero matrix.

The following Theorem is of fundamental importance:

11.27 If the field F is of characteristic zero, the group algebra o is

semi-simple. |

Proof. From the anti-isomorphism of of :
a = Zx{G‘ a' = le'_lGi-l,
i

- where x;7 ' =0 if x;,=0, we conclude that if 2 € 4 then so also is a’, and

conversely. From the definition it follows that for any a # 0 in A"
B

F
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there exists an integer m such that a € #™ and a’ € #™, with /" 2"=0.
But the coefficient of 7 in aa’ can never vanish so that aa’ # 0,
which is a contradiction. Thus no a 3 0 exists in 4 and of is semi-
simple.

If F is of characteristic different from zero this proof fails and the
group algebra may possess a radical, as we shall see.

There is one other important idea which we must introduce here: if
e =¢, then e, is said to be idempotent. If e, is also an idempotent such

that 'elez=ezel=0, then
(ey+ey)” = ey +e,

so that e, +e, is an idempotent. Continuing thus, we may construct
in at most g steps a principal idempotent e for which no further e’ exists.
That this principal idempotent is unique is easily seen. For,

el=e=1Ie, (I-e)e=¢e(I—e)=0,

and e+(/—e)=11is also idempotent. But, by assumption, this can only
happen if /—e=0 so that e=1. Thus:

11.28 The only principal idempotent in a group algebra is the identity.

11.3 ' Character theory. Consider a group ¥ of finite order and a group
(G) of nonsingular matrices or linear transformations of a vector-space
V with coefficients in a field F, which we shall assume is algebraically
closed. If (G) is homomorphic to ¥, every element of a normal sub-
group S is mapped on the identity matrix of (G); if (G){(G))=(G/G})}
for all i, j, (G) is called a representation of 4, and ¥ [ 5 is isomorphic to
(G). From such a representation of 4 we obtain a representation of the
group algebra &f by replacing G; by its representative matrix (G,) in
11.22. If we interpret the x,in 11.22 as independent variables the matrix

g
11.31 G = Z x{G)
i=1

is called the group matrix of the representation (G).

A representation (G) is said to be decomposable if the vector space V
is the direct sum of two subspaces V, and V, boia of which are in-
variant under (G). Adapting the coordinate system in V to this de-
composition we have

11.32 (G) = [‘g)-‘ (?})2];
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where (G); operates in ¥V, and (G), in ¥,. If such reduction bé con-
tinued we finally obtain a splitting of (G) into indecomposable components

(G); which are uniquely determined up tc a linear transformation. Each
(G),; is also a representation of %.

While the representation (G) may be indecomposable it may still be
reducible, in which case the vector-space V contains a subspace V,
which is invariant under (G), although the complementary subspace V,
is not. Again, adapting the coordinate system in ¥, we have

- T@, o
L3 (G)‘[(G)ii (G-)u]

where (G),; and (G)u aré representations of . If (G),; and (G),,
are irreducible then clearly the radical of the group aigebra is obtained

by setting (G);(=(G),,=0 in 11.33. If the ficld F has characteristic
zero, in particular if Fis the complex field, (@), ; =0 and (G) is completely

reducible by 11.27; in this case the concepts of indecompos-bility and
irreducibility coincide.
The following theorem is fundamental in the theory:

11.34 Scuur’s LEMMA. If X and X' are two irreducible group matrices
of 9 degrees fand f' and P is a constant f x ' matrix such that XP=PX/',
then (i) P=0 or (ii) f=f" and | P| #0.

Proof. Let us assume that P is a non-zerc matrix of rank r>0, and set
f-r=s f'=r=1
so that there exist non-singular matrices 4, B such that APB= () where

I 0,
Q“[m ou]'

In this matrix Q, I,, is the identity matrix of degree r while 0,, is the
zero matrix having r rows and ¢ columns. If we write AXA™'=X,,
B~'X'B=X/, then the relation XP=PX’ becomes

XIQ == QXI',

so that, by suitably partitioning X, and X,’ we may writc

s X"' Xl’-! Ir‘r Orr — Irr Ort X:-r X:*_! . ’
X1Q"'[X,, Xi,,:“i(}&,r 0,,]-[0" Oﬂ]l:x;r x 4= X,

S £4 N
or

X, 0. _{x. x

Xe Ouf [0, O,



10 THE SYMMETRIC GROUP §

from which we conclude that X,,=0,, X;;=0,,. But if r<f or r<f’
- this would imply that X or X' is reducible, contrary to supposition.
Thus if P#0, r=f=f"and |P|#0, so that

P iXp =YX
and X and X’ are said to be equivalent.

~ This definition of the equivalence of the group matrices X , X’ includes
in particular the change of basis elements introduced in § 11.2.
There is a remarkable corrollary of Schur’s Lemma namely:

11.341 If X is irreducible and P~ XP=X then P=al,.
Proof. If a is a characteristic root of P then | P—al, |=0. But clearly
X(P—al}) = (P—al)X

so that the matrix (P—al;) must be the zero matrix by 11.34, and
P=al, as required.

This conclusion enables us to dispose of the representation theory of
Abelian groups once and for all:

11.342 Every irreducible representation of an Abelian group is of degree 1.

Proof. If X=} x,(G;) for any representation (G) of the Abelian group
@, it follows immediately that

X(G) = (G)X,

so that (G,)=pI, for every i. But this is just the condition above, that
every irreducible representation must be of degree 1.

There is one further application of Schur’s Lemma which gives
explicit information concerning the matrices of an irreducible repre-
sentation.

11.343 If X=(x;;) and X'=(x,,) are the group matrices of two irre-
ducible representations G — (af) of degree f and G — (b%,) of degree
f' of 4, where:

xij = Za?iji x;mt = Z br(:nxz?,
G G
then
; -1 g .
(l) ZG:(IS aﬁ =]5i15jk (l,}, k,l-_—' 1,...,f),

(i) %aﬁ—’b,‘,’:n=0 (mn=1,...,f)



