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CHAPTER I

DIFFERENTIAL CALCULUS IN NORMED LINEAR SPACES

We shall recall in this chapter the notions of differentiability in the sense
of Gateaux and Frechet for mappings between normed linear spaces and some of
the properties of derivatives in relation to convexity and weak lower semi-conti-
nuity of functionals on normed linear spaces. We shall use these concepts
throughout our discussions,

In the following all the vector spaces considered will be over the field of

real numbers IR,

If V is a normed (vector) space we shall denote by " . "V the norm in

V, by V' its (strong) dual with " . “V' as the norm and by €. , , > the
VgV

duality pairing between V and V', If V is a Hilbert space then (.,.)_ will

v

denote the inner product in V, If V and H are two normed spaces then
gc (V,H) denotes the vector space of all continuous linear mappings from V

into H provided with the norm A —» “A'L&v ) = sup { HAv "H/"V"V’ veV}.

1. GATEAUX DERIVATIVES

Let V,H be normed spaces and A: Uc V — H be a mapping of an
open subset U of V into H, We shall often call a vector eV, #0 a
direction in V,

DEFINITION 1.1, The mapping A is said to be differentiable in the sense of

Gateaux or simply G-differentiable at a point u€ U in the direction ¢ if the

difference quotient

(Afu+09) - A(u))/8
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has a limit A'(u,p) in H as 6—> 0 in R. The (unique) limit A'lu,9) is

called the Gateaux derivative of A at u in the direction o .

A is said to be G-differentiable in a direction ¢ in a subset of U if
it is G-differentiable at every point of the subset in the direction ¢ .

We shall simply call A'(u,¢) the G-derivative of A at u since the
dependence on ¢ is clear from the notation,

REMARK 1,1, The operator V3¢ +—> A'(u,p) e H is homogeneous:

A'(u,ag) = & A'(u,9) for a >0,

In fact,

A'(ue® ) = lim (A(u+a69)-A(u))/6 =a lim (A(u+ip)-A))/r =aA'(u,p).
0—0 A—=>0

However, this operator is not, in general, linear as can be seen immediatly
from Example 1. 2 below,

We shall often denote a functional on U by J,
REMARK 1,2, Every linear functional L : V —>R is G-differentiable

everywhere in V in all directions and its G-derivative is

L'(u,9) = L(®)
since (L(u+0®)- L(u))/8 = L(¢). Itis a constant functional (i, e. independent
of u in V),
If a(u,v) : VxXV—>» IR is a bilinear functional on V then the functional

J:Vavi—> J(v) =a(v,v)e R is G-differentiable everywhere in all directions

and

J'(u,9) =a(u,®)+a(e,u),



If further a(u,v) is symmetric (i.e, a(u,v) = a(v,u) for all u, ve V) then
J'(u,p) = 22(u,p ). This follows immediately from bilinearity:

a(u+8ep ,u + Byp) = a(u,u) + 8(a(u, ) +a(p,u)) + Qza(q:'cp )
so that

J'(u, @) = lim (J(u+8®) - J(u))/6 = a(u,®) + a(P,u).
8—>0

The following example will be a model case of linear problems in
many of our discussions in the following chapters,
Example 1,1, Let (u,v) +—>a(u,v) be a symmetric bi-linear form on a
Hilbert space V and v +—>L(v)a linear form on V. Define the functional

J:V —>»R by
J(v) = 3 a(v,v) - L(v).

It follows from the above Remark that J is G-differentiable everywhere in

V in all directions ¢ and

J'(u:tp) = a(utw) 2t L(¢)'

In many of the questions we shall assume:

(i) a(.,.) is (bi-) continuous: there exists a constant M >0 such that
a(u, v) SM“u“ V" v uV for all u,veV;
(ii) a(-*°*) is V-coercive: there exists a constant & > 0 such that

a(v,v) >a “vuf] for all veV

and
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(iii) L 1is continuous: there exists a constant N> 0 such that
L(v) SNHV ”V for all veV,
Example 1.2, The function f:R% —>R defined by

0 if fx,y)=(0,0)

f(x,y) =
o x5/((x-y)2+ x%) if x,y) # (0, 0)

is G-differentiable everywhere and in all directions. In fact, if u =(0, 0)¢ R2

then given a direction ¢ = (X,Y)e¢ R ( ® #0) we have
(f(8X, 0Y) - £(0,0))/8 = 02X Y(X-v)2 + 82 x%)

which has a limit as 86— 0 and we have
0 if X$Y

f'u,®) = f'((0, 0), (X, Y)) ={
X if X=Y

One can also check easily that f is G-differentiable in Bz.

The following will be the general abstract form of functionals in many
of the non-linear problems that we shall consider,
Example 1,3, Let \Q be an open set in R™ and V = Lp(n ), p>1. Suppose

1
g: ]Rla t— g(t)e R! be a C -function such that

@) |gw|< c|Y® and (i) gl c |t

for some constant C> 0, Then

ub—> J(u) =f glu(x)) dx
0

defines a functional J on Lp(ﬂ ) =V which is G-differentiable everywhere

in all directions and we have
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J'w,e) j g'fu(x)) g (x) dx.
Q
(The right hand side here exists for any u, ge Lp(o)).
In fact, since ue Lp( Q) and since g satisfies (i) we have

j p
Jw| < lgwldx <c| |u]® dx<+

¢} 0

P
which means J is well defined on Lp(n ). On the other hand, for any u€eL (Q),

since g' satisfies (ii), g'(u) e LP (@) where p-1+ p"l =1, For, we have

j e ax<c| JulPPPax =cf ful® ax < + oo.
a a 0

Hence, for any u, e LP(Q ), we have by H8lder's inequality

‘ é‘g'(u)tp dx‘ .S_“g'(u)"Lp(m“tp “LP(Q )SC"u"zl/)?{; )“cp“Lp(m<+ © .

To compute J'(u,), if 8¢ R we define h: [0,1]—>R by setting
h(t) = g(u + téy ).

Then he Cl(O, 1) and

1 1
h(1) - h(0) =J‘ h'(t) dt = e¢ (x?f g'(u+t0 o )dt
0 0
(t = t(x)[t(x)] € 1) so that
'y
(J(ute®) - J(u))/6 if ® (xJ g'(u(x) + t0 ¢ (x))dt dx.
0 0

One can easily check as above that the function

(x,t) = e(x) g'(u(x) + t0 ¢ (x))

belongs to Ll(Q x[0,1]) and hence by Fubini's theorem
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1
(J(u+6ep) - J(u))/® =f dtf ® (x) g'(u(x) + t0ep(x))dx.
0 e}
Here the continuity of g' implies that
g'(utt8yp) —>g'(u) as 8 —>0 (and hence as t8 —> 0)

uniformly for t ¢[0,1]. Moreover, the condition (ii) together with triangle

inequality implies that, for 0<6<1,

-1
o () g (utx) + tep x| clo)] (juea| +|o ohP

and the right side is integrable by Hdlder's inequality, Then by dominated

convergence theorem we conclude that

J'(u,e) =f g'(u) o dx,
0

DEFINITION 1,2, An operator A : US V —»H (U being an open set in V)_ig_

said to be twice differentiable in the sense of Gateaux at a point ueV in the

directions @ ,¥Y (p,¥Ye V, #0, ¥ # 0 given) if the operator w—>A'(u,p) :

US V —> H is once G-differentiable at u in the direction ¥ . The G-deri-

vative of uj—>.At(u,¥) is called the second G-derivative of A and is denoted

by A'"(u;, ¥)e H,

i.e, A(we,¥) =lim  (A'(u+8Y , ) - A'(u,p))/9 .
0—>.0

REMARK 1. 3. Derivatives of higher orders in the sense of Gateaux can be
defined in the same way. As we shall not use derivatives of higher orders in
the following we shall not consider their properties,

Now let J: U2 V—> IR be a functional on an open set of a normed

linear space V which is once G-differentiable at a point ueU. If the functional



% > J'(u,p) is continuous linear on V then there exists a (unique) element

G(u)e V' such that

J'(u, @) = < G(u), for all ¥ €V,

PPvixv
Similarly, if J is twice G-differentiable at a point ue U and if the form
(¢,¥)+> J"(u;e ,¥) is a bilinear (bi-) continuous form on VXV then there

exists a (unique) element H(u\cZ(V, V') such that

T(we,¥) = <Huwe ,¥> Vig v

DEFINITION 1.3. G(u)e V' is called the gradient of J at u and H(u)eL(V, V')

is called the Hessian of J at u,

2, TAYLOR'S FORMULA

We shall next deduce the mean value theorem and Taylor's formula of
second order for a mapping A : US V —> H (U open subset of a normed linear
space V) in terms of the G-derivatives of A, We shall begin with the case of
functionals on a normed linear space V,

Let J be a functional defined on an open set U in a normed linear space
V and u,®e€V,® 0 be given. Throughout this section we assume that the set
{u+8¢; 06¢e[0,1]}is contained in U. It is convenient to introduce the function

f:00,11—>R by setting

8 —> f(8) = Ju+0ep).

We observe that if J'(u+ 8¢ ,%) exists then f is once differentiable in i o A

and, as one can check immediately



f'@) =J'(u+0e,p),
Similarly if J"(u+ 09,0, ¢) exists then f is twice differentiable and

£''(0) =T"u+0w;p, @),

PROPOSITION 2.1, IL.et J be a functional on an open set U of a normed space

V and ueU, eV begiven, If {u+8;0¢e[0,11}eU and J is once G-differ.

entiable on this set in the direction ¢ then there exists a Qoe 10,1[ such that

(2.1 J(ute ) =J(u)+J'(u+eocp,cp)

Proof. This follows immediately from the classical mean value theorem applied

to the function f on [0,1]: there exists a Qoe J10,1[ such that
£(1) = £(0) + 1-£'(0)

which is nothing but (2, 1),

PROPOSITION 2,2, Let U and J be as in Proposition 2,1, If J is twice

G-differentiable on the set {u+8¢%; 8¢[0,1]} in the directions ¢ , ® then there

exists a 8,¢]0,1[ such that

(2.2) Jute) =J) + J'(u,@)+ 3 J"u+ 0,09 ,0).

This again follows from the classical Taylor's formula applied to the
function f on [0,1],.
REMARK 2.1, If L : V—) .R is a linear functional on V then by Remark 1,1
is G-differentiable everywhere in all directions and we find that the formula (2. 1)

reads

L(u+g) = L(u) + L(o)



