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Preface

There have been very rapid developments of efficient algorithms on scientific com-
puting and related investigations of mathematical issues of partial differential equa-
tions and image processing over the past decade. As a result, many problems in
diverse application fields such as fluid dynamic, image processing, computer vision,
and computer graphics in the entertainment industry can now be routinely simu-
lated to high resolution. It is our intention to organize a well respected international
conference series on Scientific Computing and Partial Differential Equations in Hong
Kong. The first of this conference series was held at Hong Kong Baptist University
in December 2002, and was a highly successful event.

In the second of this conference series, we would like to review recent developments
and to explore exciting new directions in scientific computing and partial differential
equations for time dependent problems and its interaction with other fields such as
image processing, computer vision and graphics. An emphasis of this conference,
which we hope will set it apart from others, is the strong interaction of significant
mathematics with advanced algorithms applicable to real world applications.

The Society for Industrial and Applied Mathematics (SIAM) is the major society
for Applied Mathematicians. There are many chapters and sections for the SIAM
in many regions in the world. The East Asia SIAM was formed a few years ago,
but its first conference has not yet been held. The East Asia SIAM has recently
decided to organize its first conference jointly with the 2005 International Conference
on Scientific Computing and Partial Differential Equations.

The conference attracted a number of leading scientists in scientific computing and
partial differential equations including

Mark Ainsworth (Strathclyde, UK),

Alfred Carasso (NIST, USA),

Carsten Carstensen (Humboldt, Germany),
Zhiming Chen (CAS, China),

Philippe G. Ciarlet (CityU, Hong Kong),
Weinan E (Princeton, USA),

Lisa Fauci (Tulane, USA),

Daniele Funaro (Modena, Italy),

Barbara Keyfitz (Fields Institute, Canada and Houston, USA),
Wenbin Liu (Kent, UK),

Yvon Maday (Paris 6, France),

Rolf Rannacher (Heidelberg, Germany),
Jie Shen (Purdue, USA),

John Strain (Berkeley, USA),

Gilbert Strang (MIT, USA),

Andrew Stuart (Warwick, UK),

Pingwen Zhang (Peking, China),

Jun Zou (CUHK, Hong Kong).
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It also drew an international participants of 150. The detailed information includ-
ing invited speakers, organizing committee and conference programs can be found
http://www.math.hkbu.edu.hk/SCPDEQ5.

We are very grateful for the generous donations to support this conference given
by

The Croucher Foundation,

Enrichment Programme for Young Mathematics Talents (CUHK),

Hong Kong Baptist University,

Hong Kong Mathematical Society,

K.C. Wong Education Foundation,

Lee Hysan Foundation,

PKU-HKBU Joint Research Institute for Applied Mathematics, and

Society for Industrial and Applied Mathematics.

A number of staff at Hong Kong Baptist University worked together to handle
the detailed arrangements. We would especially like to thank Claudia Chui, Elsa
Fong, Tammy Lam,; C. W. Yeung and the graduate students of the department of
Mathematics, Hong Kong Baptist University. Their help has been indispensable. We
appreciate their assistance in making the conference organization a success.

These conference proceedings were refereed. We would like to thank all referees
for their support. We thank Tammy Lam for the considerable work she put into
producing the final layout of the proceedings.

Wenbin Liu, University of Kent, UK
Michael Ng, Hong Kong Baptist University, Hong Kong
Zhong-Ci Shi, Chinese Academy of Sciences, China
Editors
February 2007




Contents

Invited talks

Dispersive Effects of Discontinuous Galerkin FEM for Acoustics
Mark Answorth ... ..o e e 1

Adaptive Finite Element Mesh-Refining Algorithm for L2-error control
Carsten Carstensen and Jan Bolte ........c.cuiuiiiiiiieieieniieieinnenn. 13

High Order Eno Conservative Remapping Method on Staggered Grids for
ALE Methods: A Review and an Alternative Momentum Remapping
Juan Cheng and Chi-Wang Shu ......ooiiiii ittt 40

Jacobi-Spherical Harmonic S}')ectral Method of Navier-Stokes Equation
Ben-yu Guo and Wei HUGnG .............ccooiiiiiiiiiiiiiiiiiiiiiinnaain, 57

On Uniqueness in Inverse Acoustic Obstacle Scatterings
Hongyu Liv and Jun Zou ........o.oiininn ittt iiiianaeaeannn. 69

Some Open Problems on Finite Element Methods for Optimal Control
Problems
Wenbin Liv and Ningning Yan ..........o.iiuiiniiniiiiiiiiiiiiininennns. 80

Adaptive Solution of PDE-Constrained Optimal Control Problems
ROIf RaNNOCRET ..ottt et e et ettt e 100

Semi-Lagrangian Contouring And Elliptic Systems With Complex Moving
Interfaces
JORT STrain ... ..o e e e 123

A Comparison of High Resolution Schemes for Hypersonic Chemically
Reacting Flows
Li Yuan and Tao TaNG ... .onnen et e ettt iae e 142

Review on Doi-Onsager Model in Polymeric Fluids
Hui Zhang and Pingwen ZRANG . .........euunuieiaiiieeiieiiiieneannnnn. 155
Contributed Talks

Numerical Coupling of Two-Phase Flows
A Ambroso et. al. ... o 168



iv Contents

Spatial Resolution Properties of Mapped Spectral Chebyshev Methods
Bruno Costa, Wai-Sun Don and Aline Simas ...........cciiiiiiiiiiinnn.. 179

Restoring Halftoned Color-Quantized Images with Projection onto Convex

Sets
Yik-Hing Fung and Yuk-Hee CRam . ......ooiiiiiin i, 189

Variational Formulation of the Generalized Navier Boundary Condition
J.-F. Gerbeau and T. Lelieure ........coouinuiiiiiiiii it 204

Fast Fourier Transform on Multipoles (FFTM) Algorithm for Laplace
Equation with Neumann Boundary Condition
Xuefei He, Kian-Meng Lim and Siak-Piang Lim .................cocoviini.. 221

Development of Evaluation System for Numerical Algorithms to Solve Linear

Equations
Shoji Itoh, Hisashi Kotakemori and Hidehiko Hasegawa ...................... 231

Hidden Markov Model Based Recognition of Handwritten Tamil Characters
R. Jagadeesh Kannan, R. Prabhakar and R. M. Suresh ...................... 242

Numerical Simulation of Generalized KP Type Equations with Small
Dispersion ,
Christian Klein and Christof Sparber ...........cooiuiii i i, 248

Hexagonal Spectral Methods for Two-Dimensional Incompressible Flows
Huiyuan Li ....... e e e e e e, 262

High-Resolution Non-Oscillatory Central Schemes for Multidimensional
Hyperbolic Conservation Laws
Chi-Tien Lin and Chi-Jer YU ......cooiiii i e, 276

Iterative Penalty Methods for Navier-Stokes Equations
Xiliang Lu and Ping Lin .......... e 291

A Block Preconditioner for an Electromagnetic FE-BE Coupling Problem in
]RS
Matthias Maischak and Thanh Tran ..........c.oooioiieiiiniiie .. 302

Solving Variational Image Denoising Problems Using Limited Memory Bundle
Method
Kirsi Majava, Napsu Haarala and Tommi Kérkkdinen ....................... 319

Superconsistency Property for Nonconservative Operator Approximation:
Application to Compressible Multifluid Flow
Boniface NEKONGQ . .....ooni et it e e e 333




Contents v

Spectral Methods Using Jacobi Rational Functions with Applications to
Mathematical Models in Finance
Zhong-qing Wang and Ben-yu GUO ...........cooiiiiiiiiiiiiiiiiiiiiiniina.. 341

A Locking-Free 4-Node Quadrilateral Reissner-Mindlin Plate Element Based
on Hellinger-Reissner Principle
Xiao-ping Xie and Tian-ziao Zhou .........ccouiiuiniiiiii i, 351

Spectral-Domain Decomposition Method and its Applications in Finance
Cheng-long XU .. ..o e i ettt 367

A Three Dimensional Model of Membrane in Proton Exchange Membrane
Fuel Cell
Jiang-Hui Yin, Hao Wu and Jun Cao .........cooeiiiininiiiniinnannnnnn. 382

On Adaptive Finite Element Methods for Eddy Current Problems
Weilying ZRheng ..ot e 387

———



Dispersive Effects of Discontinuous Galerkin
FEM for Acoustics

Mark Ainsworth*

Mathematics Department, Strathclyde University, 26 Richmond Street,
Glasgow G1 1XH, Scotland.

Abstract. The discontinuous Galerkin finite element method is formulated for
the equations of acoustics in three dimensions based on a centred numerical
flux. We show that our previous theory for the scalar advection equation may
be applied in this setting and use it to show that the discrete scheme admits
non-trivial propagating, Bloch-wave solutions of the homogeneous equations and
bounds are given on the wave-number of the discrete waves in terms of the
corresponding wave-number for plane-wave solutions of the continuous equations.
Sharp bounds are established relating the order N of the scheme and the mesh-
size h that are needed to provide accurate resolution of the continuous waves. As
a by-product, we are able to provide a rigorous proof of the standard guideline
that ‘r modes per wavelength’ are needed for a high order or spectral method
to resolve a wave.

Key words: Discrete dispersion relation; high wave number; discontinuous Galerkin ap-
proximation; hp-finite element method.

AMS subject classifications: 65N50, 65N15, 65N30, 35A40, 35J05.

1. Model Problem
The equations of three-dimensional acoustics take the form
ot +div(pu)=0
(pu): + div(pu ® u) + gradp=0 (1)
(p/p")¢ +u - grad(p/p7) = 0

where p denotes the density, p denotes the pressure and u denotes the velocity and
is the adiabatic constant of the gas. t

* Email: M.Ainsworth@strath.ac.uk
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2 Mark Ainsworth

We consider a problem corresponding to an initial state where the medium is at
rest and the ratio p/p” is constant everywhere. The final equation in the non-linear
system then shows that the ratio remains constant in the ensuing motion, and we
may therefore replace the final equation by an equation of state )

_,0% = const. (2)

If the ensuing disturbances are assumed to remain small, we may linearise the system
.about an ambient state (p = po, p = po and w = 0) and lock for a solution of the
form

p=po(l +ep)
p=po(l +€p) (3)
uU=cu

where ¢ is a small parameter, and p, p and u denote O(1) quantities. Inserting these
expressions into the first two equations of (1) and equating lowest terms in ¢ leads to
the system

pt + dive=0 @

U + (po/po)gradp=0,
while the equation of state leads to the relation 7 = p. Hence, eliminating the
pressure in favour of the density and omitting tildes, we arrive at the linearised version
of (1)
pt +divu=0

; (5)
u + c*gradp=0,

where ¢? = ypo/po is the ambient speed of sound in the medium. Introducing the

vector U = (p,u/c), we may write the system in the form

U;+ M(grad)U =0 (6)
where T
M(w):[cgv “ J )

Alternatively, one may eliminate the velocity to obtain a scalar wave equation for the
density,
pu + 2 Ap = 0. ®)
The nature of the physical application leads us to anticipate the presence of oscil-
latory wave solutions. With this in mind, we seek non-trivial solutions of the form

Uz, t) = efF==wiy, (9)

where k is the wave-vector, w is the temporal frequency, and Uy is a constant vec-
tor. Inserting the expressions into the linearised system and simplifying leads to the
condition

(—wI+M(k)Uy=0 (10)
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where I denotes the identity matrix. Hence, in order to admit a non-trivial solution,
it is necessary that the matrix be singular. By considering the determinant of the
matrix, we arrive at the following condition for the existence of non-trivial plane wave
solutions

Aw? — |k|? = 0. ~ (11)

This relation is referred to as the dispersion relation for the equations. Of course,
the same dispersion relation would arise if one were to insert the trial function for
p into the scalar wave equation. The dispersion relation is important in that it
relates the temporal frequency to the spatial variation in non-trivial solutions of the
homogeneous equations in the absence of boundary conditions. Thus, one expects the
general solution to consist of a particular solution augmented by a linear superposition
of solutions of the form (9) with the wave-vector related to the frequency by the
dispersion relation. For example, in the case of a time-harmonic solution, i.e. a single
prescribed value of w, corresponding to a monochromatic excitation, the magnitude
of the spatial variation |k| is given by wc with only the direction of propagation
undetermined.

2. Discontinuous GalerKin Discretization

A form of the discontinuous Galerkin finite element method (DGFEM) may be traced
back to [11], while overviews of more recent developments may be found in [6,7]. The
discontinuous Galerkin dlscretlzatlon of (5) is constructed on a partitioning of the
computational domain into non-overlappmg cells. Although rather general partitions
may be employed for DGFEM our chief interest here lies in investigating the ability of
the numerical scheme to acqurately mimic the propagation of waves through regions
of free space remote from domain boundaries, where one would generally use a highly
structured mesh. For this reason we shall conﬁne our attention to uniform partitions
of R? consisting of cubic cells of side k > 0, whose sides are aligned with the coordinate
axes and whose nodes are located at the points hZ3.

' As we observed earlier, it is possible to reduce the first order system (5) to a second
order scalar equation (8). However, for the purposes of discretization, it is actually
more convenient to work with the first order system itself. Of course, one may regard
any resulting scheme as a discretization scheme for the scalar, second-order wave
equation (8) where, starting with the second-order wave equation, one rewrites the
equation as a first-order system (5) before performing discretization.

For N € N, let Py denote the usual space of polynomials in one variable of degree at
most N. An N-th order DGFEM seeks an approximate solution U® whose restriction
to each cell K belongs to the tensor product space P3,(K), but does not require the
approximation to be contlnuous at cell interfaces. Instead, continuity is enforced in a
weak sense between nelghbourmg cells K and K’ through the use of a numerical flux
function ¢, defined on the interface 8K N AK’. The true flux on the interface in the
direction of the unit normal vk on the interface is given by

ocvk,U)=Mwg)U.




4 Mark Ainsworth

The numerical flux &k, U®") from cell K to cell K’ in the direction of the unit
outward normal vk is defined by the centred scheme

Fk, U™) = —2]:M(VK)( % %)  on 8K NOK,

where U% denotes the discontinuous Galerkin approximation evaluated on cell K.
Observe that the flux function satisfies the consistency property &(vk,U) = o(vk,U)
when U is continuous at an interface. Moreover, there is no generation or loss of flux
in the sense that the flux from cell K to K’ is exactly balanced by the flux in the
opposite direction from K’ to K:

o(vg,U®) = —o(vk,U) ondKNOoK'

where v+ denotes the outward normal on JK’. More general numerical fluxes and
the associated dispersive and dissipative properties of the resulting schemes were
discussed in [3].

Multiplying the equation (6) by a test function V, and applying integration by
parts results in the following equation,

(U, V)x = (U, M(grad)V)x — /6 VTowx,U)ds (12)

where the final term represents the transfer of flux across the cell face. This equation
is satisfied by the true solution of the system (6). The discontinuous Galerkin finite
element approzimation of the problem is defined by replacing the true solution in the
first two terms by its approximation U% € P%,(K) on cell K, and replacing the true
flux o(vg, U) with the centred numerical flux (v, U) and requiring that

(U, V)x = (U, M(grad)V)x — / V& (wk, U) ds (13)
oK

holds for all test functions V' € P, (K). This defines the scheme, which takes the form
of a coupled system of first order ordinary differential equations in time along with
an initial condition in terms of the initial state of the system. A fully discrete scheme
would entail ‘discretization of the temporal derivative, but we shall content ourselves
with a study of the spatial discretization and not pursue this further here [8].

3. Existence of Bloch Waves for DGFEM

We have seen that the true equation admits non-trivial propagation plane waves of

the form o
U(:t,t) — 6—zwtezk-a:U0

provided that the wave-vector k is related to the frequency w by the dispersion re-
lation (11). One might wonder whether the numerical scheme admits non-trivial
propagating discrete solutions, and if so, how the wave-number for the discrete solu-
tions was related to that of the continuous solutions. Obviously, the discontinuous
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Galerkin approximation space does not contain plane wave solutions, so we should
first settle on the form and the properties that the propagating discrete solutions
should have.

By analogy with the plane wave used in the continuous setting, we seek non-trivial
solutions of the form

U (z,t) = e~ ™ie(x)U, (14)

where € € P3,(K) on each cell K. Naturally, we require that this function should
satisfy the discretization scheme (13). In fact, it will be convenient to rewrite the
scheme by integrating by parts, to obtain the equivalent condition

1 .
(U%: + M(grad)U, V)i + 5 / VI M@)US -UE)ds=0.  (15)
K

Finally, the plane waves ha\:r-e the following Bloch wave [10] property:
Uz + hm,t+7) = "™y (1) VYm € Z% Vr e R.

That is to say, translation of the solution in space or shift in time is equivalent to a
change of phase. By the same token, we ask that the discrete solution should have
the same property

U (x + hm,t + 1) = FRm—en oy 1) vm e 73, Vr € R, (16)

where k is the discrete wave_vector.

In general, we shall see that k differs from k, reflecting the fact the discrete scheme
does not admit waves that propagate at precisely the same speed as for the continuous
equation. Thus, the numerical waves might possibly lead or lag behind the continuous
wave depending on the particular excitation w and, in the case of a superposition,
one might see dispersive effects in the numerical scheme that are not present in the
continuous equations. Moreover, we may find that k contains non-zero imaginary
part, corresponding to numerical attenuation or dissipation. For further discussion
on the dispersion and dissipation of numerical schemes, we refer to [9, 13].

We wish to show that thére exist non-trivial functions U of the form (14), sa-
tisfying conditions (15) and (16). Furthermore, in order to understand the nature of
the numerical scheme, we wish to relate the components of the discrete wave-vector
k to those of the corresponding continuous wave-vector k.

Our main result may be stated formally as follows:

Theorem 1. Suppose that w € R and wave-vector k € R® satisfy the continuous
dispers@n relation |k|* = w2c?. Then, there ezists a corresponding discrete wave-
vector k € C® and a non-trivial discrete Bloch-wave solution U of the form (14)
satisfying conditions (15) and (16).

To see why the result is true, we fix any particular cell K = ngl(ae,bg), with
be — a¢g = h. In [2, Section 5], we showed there exists &, € Px(ae, be) satisfying the
condition

ike(es,v) = (€},v) + % (Aeee(ae) — eo(be)) v(be) + % (ee(ae) — A7 'ee(be)) v(ae) (17)
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for all v € Py (ae,by), where Ay = ei**¢ with k, as in the statement of our theorem.
We use these function to construct the choice of ¢ in the expression (14) on element
K by setting e(z) = [[o_; ee(x¢). The value of U on thie remaining cells is then
defined by the condition (16). That is to say, we evaluate U"® at a given point in a
cell by first evaluating U®® at the corresponding point in cell K, and then multiplying
by the phase indicated in (16).

It remains only to show that the function U satisfies (15) on the particular cell K,
since the result in case of the remaining cells would then follow automatically thanks
to condition (16). Inserting the expression (14) into (15) and simplifying leads to the
following condition on Uyg:

0=—iwUpy+ Z ( g(?))) M(e)Uy, Vv € Pn(ae,be),
z ’

where ey denotes the ¢-th unit cartesian vector, and

Quv) = (e0,0) + 5 (ee0F) = cel67)) v(be) + 5 (eelaf) — eu(ay)) vlae).

We may simplify Q(v) by taking advantage of condition (16) to write g4(b)) =
Agsg(ae ) and eg(a;) = A;'ee(b;). Inserting these into the expression for @, and
using equation (17), we see that

Qe(v) = ike(gg, v).
The condition on Uy then simplifies to read
= —i(wl — M(k)) Uo,

and, in view of our assumption on w and k, on recalling (10) we see that non-trivial
solutions exist as claimed.

Theorem 1 shows that the numerical scheme mimics the continuous system in the
sense that if the continuous system admits a propagating wave with wave-vector k,
then the numerical scheme also admits a corresponding wave with wave-vector k. The
next result quantifies in what sense k may be regarded as an approximation to k.

Theorem 2. Let k and k be defined as in Theorem 1. Then

ehthe=ke) = 1 4 g + O(lgn [?) (18)
where ) .
. HN(_.ihke)elhke En + (—-1)N+1H1’§,(-—-ihk‘e)e"hk£5§\} (19)
- Hy (—thkg)ethke 4 (—1)N H%,(—ihk,)e—thke
and Hy(-) denotes the confluent hypergeometric function ;F1(—N;~2N —1;-), En is

the relative error in the [N + 1/N|-Padé approzimate to e**¢, and* denotes complex
conjugation.

A proof of this result will be found in [2].
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3.1 Behaviour in the limit hk < 1

The order in hk for the difference between the discrete wave-number and the true
wave-number is often used as a criterion for comparing, and even the design [5] of,
numerical schemes for wave propagation. Suppose that hk, < 1, then we find [2] to
leading order in hk that

. : 2 —(hkg)2N+3£+—1—, N even

ih(Re—ke) 1 L L [ M ) ] 2N +3 (20)
2 [(2N+1)! oNt12N +1
—, N
. (hke) N+l s odd
and as a consequence, again;to leading order in hk,
1
2 | —hENFIEZN s N+1 N even
T — ey = 1 N! 2N +3’ (21)
M T2 N !

thka“%{—Tl, N odd.

Figure 1 shows the variation of the actual relative errors (hk — hk) /hk versus hk
for the discontinuous Galerkin approximations of orders 1 through 5. It is seen that
the the above asymptotic oi_j'ders are realised provided that hk is sufficiently small.
However, we see that when hk is not sufficiently small, then the relative error is of
order 1 and behaves rather erratically. This phenomenon is familiar to members of
the computational wave propagation community, where one often hears the rule of
thumb recommending that tg'n elements per wavelength should be used to resolved a
wave using first order elements. In the present context, we see that the wavelength
A = 27/k so that the number of elements per wavelength is roughly 27/hk. The
rule of thumb would suggest using hk < 7/5 ~ 0.6 in practical computations, and
examining Figure 1 one sees that this indeed provides good resolution for first order
elements, but is rather conservative for the higher order elements. We shall have more
to say on this topic in Section 4.2.

As alluded to earlier, we niay regard the discontinuous Galerkin approximation of
the first-order system (5) as-a non-standard approximation scheme for the second-
order scalar wave-equation (8). It therefore makes sense to compare these results with
those conjectured by Thompson and Pinsky [12], and subsequently proved in [1,4],
for standard conforming Galz;rkin finite element approximation of the second order
wave equation: -

_ECG — k= O(RZN 2N+

We see that in the limit hk, < 1, the phase accuracy of the discontinuous Galerkin
method and the conforming Galerkin method is comparable in the case of elements
of odd order. However, discontinuous Galerkin using even order elements is superior
to the continuous Galerkin formulation by two orders of hk, and is actually just as
good as that of the element of next highest order. This suggests that the use of
even order elements in conjunction with discontinuous Galerkin approximation with
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centred fluxes as an approximation scheme for the second-order scalar wave equation
has potential advantages over standard Galerkin schemes in terms of phase accuracy.

10°

Relative Error
1=
Py

107 10” 10° 10! 10°
kh
Figure 1 Relative error in the approximation of k of wave-number k as hk varies along

with theoretical asymptotic rates of decay given in (21) shown as straight lines.

3.2 Behaviour for large order N and large wave-number hk

Examining the estimates (21) further, one is struck by the rapid decay of the multi-
plicative constant in the leading term in the error as the order NV is increased. This
suggests, but of course does not prove, that fixing the mesh-size h and increasing the
order IV of the method might offer some advantages compared with the traditional
approach whereby the order N is fixed, and the mesh-size reduced.

In Figure 2, we show the real and imaginary parts of the relative error in the
approximation of the wave-number on a fixed mesh-size for various values of hk, as
the order N of the method is increased. A quick comparison with the corresponding
Figure 1 for low order methods shows the same basic features whereby the error
makes a transition from an oscillatory phase to a monotonically decreasing phase once
the number of degrees of freedom (here related to the order N) is sufficiently large
compared with hk. However, a closer examination reveals some significant differences.
Firstly, the number of degrees of freedom is shown on a linear scale in Figure 2 as
opposed to a logarithmic scale in Figure 1. Thus, the reduction in the error in the
asymptotic case is now at least ezponential in terms of the number of degrees of
freedom as opposed to algebraic in the case of the low order methods. Secondly, the
change from oscillatory behaviour to monotonic decay is increasingly marked as hk is
increased with the threshold is located at N =~ hk/2.

The following result 2] on the behaviour of gy appearing in Theorem 2 confirms
that these simple observation are true in general:

Theorem 3. Let gy denote the quotient appearing in the expression for the error in
Theorem 1. Then,
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kh=25 kh=50
o 0 —e—Real Part
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= E
_ = _
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Figure 2 Real and imaginary parts of relative error gy for the approximation of the
physical mode e"* for hk=25, 50, 100, 200.

e if 2N 4+ 1 < hk — C(hk)'/3, then qn oscillates but does not decay as N is
increased;
e if hk — o(hk)}/3 < 2N + 1 < hk 4 o(hk)'/3, then qn decays algebraically at a
rate O(N~1/3),
e if 2N + 1> hk, then qn decays at a super-ezponential rate as N — 0,
2N +2

ihk ehk
N~ = (TN(hk) TN+ 3) [2\/(2]\’ + 12N +3) <22)

where _ )
(1- 7)e’(hk+¢N) + (_1)N+1(1 + ,Y)e—i(hk+1/w)

(1 —y)eithk+¥n) 4 (—1)N(1 4 5)e—ilhk+¥n)
and YN = arg 1F1(—N; —2N — 1; —ihk).

Yn(hk) =

Theorem 3 shows that the asymptotic rate of reduction is actually super-
exponentially fast. Moreover, both theory and practice show that there is a sharp
transition from an essentially unresolved state, where the relative error is of order




