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Preface

The New Golden Age of Mathematics. When was the old one? Was it
the period of the Ancient Greek geometers around 300 Bc? Or did it occur during the
seventeenth century when Newton and Leibniz were developing the infinitesimal
calculus and Fermat was doing his tremendous work on number theory? Or perhaps
the mathematical career of Gauss alone (1777-1855) justifies the title of Golden
Age. Or, still later, the period that saw the work of Riemann, Poincaré, Hilbert, and
others — the mathematics produced between the mid 1800s and the start of the
Second World War was truly prodigious.

As with any area of human endeavour, it is not possible to say which was the
truly ‘greatest period’. Each new generation builds upon the work of its predecessors.
What can be said is that the present time is witnessing the undertaking of a
phenomenal amount of mathematical research. The International Directory of
Mathematicians lists some 25 500 professional mathematicians around the world,
but this represents only a small fraction of the real total. If you include also the vast
armies of ‘amateur mathematicians’ (some of whom have made some significant
discoveries!) for whom mathematics is simply a pleasant pastime, then the true
figure must be enormous. On grounds of numbers (admittedly shaky grounds, since
quantity and quality are not at all closely related, especially in mathematics), we are
in the middle of a new Golden Age right now. And since every book has to have a
title, that is more or less what I have chosen to call this one.

What this book sets out to do is to try to convey to the interested layperson some
of the most significant developments that have taken place in mathematics during
recent times. To include every advance that could be called ‘significant’ would
require several volumes, not one. So I have had to be selective — very selective. First
of all I restricted myself to developments which have taken place in the twenty-five
years from 1960 to 1985, with a bias towards the latter part of this period. Since the
book is intended for the general reader, I included only topics which have merited
attention in the world’s press and which are capable of explanation at a suitable



level. And of course my own personal tastes and preferences played a role in my
decisions.

For the most part, all that is required of you, the reader, is an interest in the
subject that caused you to pick up the book in the first place, together with some
degree of patience. (Understanding mathematics takes time, even at a superficial
level.) There are, unavoidably, parts of the text where a reasonably good school
mathematics education would enable you to get more from my account than would
otherwise be possible, but I have tried to keep these to a minimum (and you can
always skip over passages you find difficult, secure in the knowledge that it will soon
get ‘easier’). Though for the most part the chapters are quite independent of one
another, they are ordered so that earlier ones might help in the appreciation of later
ones.

Subject to all the above restrictions, plus the ever-present one of available space,
I have tried to put across some of the richness and diversity of present-day math-
ematics. What you get is, [ am afraid, just the tip of an iceberg. A book such as this
is bound to fail in its aim; I only hope it does not fail too badly.

Keith Devlin
Lancaster, England
May 1986
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1 Prime Numbers,
Factoring,
and Secret Codes

The Biggest Prime Number in the World

The biggest (known) prime number* in the world is a giant
which requires 65 050 digits to write out in standard decimal format. Using
exponential (or power) notation it has a more manageable form:

9216091 _ 1

That is, you get the number by multiplying 2 by itself 216 090 times and
then subtracting 1 from the answer.

Exponential notation is deceptive. To try to obtain some idea of its power
for representing large numbers, imagine taking an ordinary 8 x 8 chess-
board and placing piles of counters 2 mm thick (the English 10p piece is a
good example) on the squares according to the following rule. Number the
squares from 1 to 64, as in Figure 1. On the first square place 2 counters.
On square 2 place 4 counters. On square 3 place 8 counters. And so on, on
each square placing exactly twice as many counters as on the previous one.
Thus on square n you will have a pile of 2" counters. In particular, on the
last square you will have a pile of 2°* counters. How high do you think this
pile will be? 1 metre? 100 metres? A kilometre? Surely not! Well, believe it
or not, your pile of counters will stretch out beyond the Moon (a mere
400 000 kilometres away) and the Sun (150 million kilometres away) and

*See later for an explanation of this term.
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Figure 1. The astronomical chessboard number. By starting with
two 2 mm thick coins on the first square and forming a pile twice as
high on each successive square, the pile on the 64th square will
stretch almost to the nearest star, Proxima Centauri, some 4 light
years away.

will in fact reach almost to the nearest star, Proxima Centauri, some 4 light
years from Earth. In decimal format the number 2% is

18446744073 709 551 616.

So much for 2%, To obtain the number 2°'°*! which appears in the
record prime expression you would need a chessboard with 216091
squares — a board measuring 465 x 465 squares would do the trick!

Just how do you go about handling numbers of this size? For a start you
use a computer. And not just any computer. The record prime mentioned
above was discovered by using one of the most powerful computers in the
world — a machine capable of performing two hundred billion* arithmetic

*Throughout this book ‘billion" means a thousand million.
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operations a second — and even then the calculation took over three hours.
But computing power on its own is not enough; the skill of the mathemati-
cian is also required. How that skill was developed, and other uses to which
it can be put, is the subject of the rest of this chapter.

Prime Numbers

‘That action is best, which procures the greatest happiness
for the greatest numbers’, wrote Francis Hutcheson in 1725 (Inquiry into
the Original of our Ideas of Beauty and Virtue, Treatise II, Section 3.8). It seems
unlikely that he was thinking of numbers in the mathematical sense of
greatest known primes and the like, but his statement nevertheless applies
quite well to man’s never-ending fascination with those most fundamental
of mathematical objects — the natural (or counting) numbers, 1, 2, 3, ... .
These abstract mathematical objects are fundamental not only to our every-
day life but to practically all of mathematics — so much so that the nine-
teenth-century mathematician Leopold Kronecker wrote (of mathematics):
‘God created the natural numbers, and all the rest is the work of man.’

There are various properties which apply to natural numbers, splitting
them into two classes (those with a property and those without). For
instance, there is the property of being even. This splits the natural num-
bers into the class of those which are even (2, 4, 6, 8, ...) and those which
are not (the odd numbers: 1, 3, 5, 7, ...). Or there is the property of being
divisible by 3. (Here, as elsewhere in this book, when we say that one num-
ber divides another we mean that it does so exactly, leaving no remainder.
Thus 3, 6, 9, 12 are all divisible by 3, whilst 1, 2, 4, 5, 7 are not.) The
even—odd split is a natural and important one. (The split into those numbers
divisible by 3 and those which are not is not so natural, nor of any great
importance.) Another example of a natural and important split is given by
the property of being a perfect square, like 1 = 12,4 = 22,9 = 3?, 16, 25,
36, ... . And there are many others. But by far the most important way of
dividing up the natural numbers is into those which are prime and those
which are not.

A natural number n is said to be a prime number if the only numbers
which divide it are 1 and n itself. (The number 1 is a special case here, and
it is conventional not to regard 1 as a prime number.)
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Thus 2, 3,5,7,11, 13,17, 19 are all primes; 1, 4, 6, 8, 9, 10, 12, 14,
15,16, 18, 20 are not. (Numbers which are not prime are sometimes called
composite.) For instance, 7 is prime because none of the numbers 2, 3, 4, 5,
6 divides it; 14 is not prime since both 2 and 7 divide it.

The main reason why the prime numbers are so important was already
known to the Greek mathematician Euclid (¢. 350-300 Bc) who, in Book IX
of his Elements (a thirteen-volume compilation of all the mathematical
knowledge then available) proved what is nowadays known as the funda-
mental theorem of arithmetic: that every natural number greater than 1 is
either prime, or else can be expressed as a product of primes in a way which
is unique except for the order in which the primes are arranged.

For instance, the number 75 900 is a product of seven prime factors (two
being repeated factors):

75900 = 2 x2x3x5x%x5x11x23.

The expression on the right of the equals sign here is called the prime
factorization of the number 75 900.

What the fundamental theorem of arithmetic tells us is that the prime
numbers are the basic building blocks from which all the natural numbers
are constructed. As such they are like the chemist’s elements or the physi-
cist’s fundamental particles. Knowledge of the prime factorization of any
number provides the mathematician with almost complete information
about that number, as is dramatically illustrated later on in this chapter
(see the section on secret codes). But for now, what about the prime num-
bers themselves?

The most basic question you can ask about prime numbers is how com-
mon they are. Is there, for instance, a biggest prime number, or do the
primes go on for ever, getting larger and larger? At first glance they seem
to be very common indeed. Of the first ten numbers beyond 1 (i.e. 2 to 11
inclusive), five are prime, namely 2, 3, 5, 7, 11, which is exactly half the
collection. Of the next ten numbers, 12 to 21, there are three which are
prime (13, 17, 19), a proportion of O- 3. Between 22 and 31 the proportion
of primes is again 0-3, whilst for the next two groups of ten numbers the
proportion falls to 0-2. So the primes seem to ‘thin out’ the further you go
along the sequence of natural numbers. Table 1 shows how the number of
primes less than n (denoted by 7(n)) varies with n for selected values of n,
and gives the ‘density’ figure n(n)/n in each case.

So, the primes become rarer the higher up you go in the number
sequence. But do they eventually peter out altogether? The answer is no.
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n n(n) n(n)/n
1000 168 0-168
10000 1229 0-123
100000 9592 0-096
1000000 78498 0-078

Table 1. The distribution of primes, showing the number of primes
n(n) smaller than n for various values of n.

This was also demonstrated by Euclid, using an argument which to this day
remains a superb model of elegant mathematical reasoning. To begin with,
imagine the prime numbers listed in order of magnitude:

Py P2y P3voeee s

Sop, = 2,p, = 3,p; = 5, and so on. The aim is to show that this list must
continue for ever. To put it another way, it has to be demonstrated that if
we are at any stage n in the list, having enumerated p,, p,, ..., p,, then
there has to be a further prime in the list beyond p,. The trick is to look at
the number

N = ppps ... + 1

obtained by multiplying together all the primes p,, p,, p; and so on up top,,
and then adding 1 to the result. Obviously N is bigger than p,, so if N
happens to be prime then we know that there is a prime beyond p,, which
is what we are trying to prove. On the other hand, if N is not prime it must
be divisible by some prime, call it p. But if you try to divide N by any of the
primes p,, p,, ... , p, there will be a remainder of 1 (the same 1 that was
added when we obtained N in the first place). So our p must be a different
prime, and again we have proved what was required. So, in any event there
will be a prime bigger than p,, and we can conclude that the list of primes
continues for ever.

Notice that we have no idea whether the number N in the above is prime
or not. If you try a few examples you will discover that numbers of this form
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often are prime. For instance,

N =2+1 = 3,

N, =2x3+4+1 = 7,

N, = 2x3x5+1 = 31,

N, = 2x3x5x7+1 = 211,

Ny = 2x3x5x7x11+1 = 2311,

are all primes. But the next three are not:

Ny = 2x3x5x7x11x13 +1
= 30031 = 59 x 509,
N,

Il

19 x 97 x 277,

Ny = 347 x 27953.

In fact, no one knows whether infinitely many numbers of the form

N, = pp, ..., + 1

are prime, nor indeed whether infinitely many of these numbers are com-
posite (though at least one of these two possibilities has to be true, of
course). This is just one of dozens of easily stated questions about prime
numbers whose answer is not known.

One of the most famous unanswered questions about prime numbers is
Goldbach’s conjecture. In a letter to Leonhard Euler written in 1742, Chris-
tian Goldbach conjectured that every even number greater than 2 is a sum
of two primes. For instance,

4 = 2+ 2,
6 = 3+ 3,
8 = 3 +5,
10 = 545,

12 = 5+ 7.
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Computer searches have verified Goldbach's conjecture for all even num-
bers up to 100 000 000, but to this day the conjecture has not been settled
properly one way or the other.

Primality Testing

Though most of the classical problems concerning prime
numbers have remained unsolved, the last few years have seen tremendous
developments in methods by which numbers may be tested to see if they are
prime or not. ‘Methods for testing primality?’ you cry. ‘But surely it is
obvious how to go about it?” And indeed, there is a perfectly natural,
straightforward way of seeing if a number is prime or not. Given your
number, n say, you first see if 2 divides it. If it does, then n is not prime and
that is the end of the matter. Then you try 3. If 3 divides n, then n is not
prime and again you are finished. Then try to divide n by 5. (You can skip
past 4: since 2 does not divide n if you have got this far, 4 cannot divide n
either.) If 5 fails to divide n, you try 7. (Again, you can skip past 6 since 2
and 3 do not divide n.) And so on. If you get as far as \/E without finding
a number which divides n, then you know that n must be prime. (Because
if n were not prime it would be a product of two numbers u and v between
1 and n, and either u or v will be no greater than \/n, of course.)

The above process is known as trial division. Though it works well
enough for moderately small numbers, it becomes unwieldy if the numbers
are too large. To see just how impractical it becomes, suppose you were to
write a highly efficient program to run trial division on the fastest computer
available (alluded to at the start of this chapter). For a number of 10 digits
the program would appear to run instantaneously — the answer would flash
up immediately. For a 20-digit number it has a bit of a struggle and would
take two hours. For a 50-digit number it would require a staggering ten
billion years. A 100-digit number would require this many years:

1 000 000 000 000 000 600 000 000 000 000 000 000

(there are thirty-six zeros here). This is not just a trivial calculation of a very
large number. As will be explained later in this chapter, primes with between
60 and 100 digits are required for one of the most secure forms of secret
coding system in use today.
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So just how do you go about deciding whether a 100-digit number is
prime? The best method available at the moment is a highly sophisticated
technique developed around 1980 by the mathematicians Adleman,
Rumely, Cohen, and Lenstra, and often referred to by their initials as the
AR CLtest. When implemented on the same type of computer as mentioned
above, the running times for the ARCL test are, for a 20-digit number, 10
seconds; for a 50-digit number, 15 seconds; for a 100-digit number, 40
seconds. The computer will even handle a 1000-digit number if you give it
a week to work on the problem.

How does the test work? Well, it depends on a considerable amount of
highly sophisticated mathematics — mathematics way beyond a typical
undergraduate degree course — so it is not possible to give a complete
answer here. But it is not hard to explain the central idea behind the
method. This is a simple (though very clever) piece of mathematics due to
the great French mathematician Pierre de Fermat (1601-65).

Though only an ‘amateur’ mathematician (he was a jurist by profession),
Fermat produced some of the cleverest results mathematics has ever seen,
even to this day. One of his observations was that if p is a prime number,
then for any number a less than p, the number a”~! — 1 is divisible by p. For
instance, suppose we take p = 7 and a = 2. Then

@' —1=2°-1=064—-1 = 63,

and indeed 63 is divisible by 7. Try it yourself for any values of p (prime) and
a (less than p). The result is always the same.

So here is a possible way of testing if a number n is prime or not. Compute
the number 2"' — 1. See if n divides it. If it does not, then n cannot be
prime. (Because if n were prime, then by Fermat’s observation you would
have divisibility of 2"~' — 1 by n.) But what can you conclude if you find
that n does divide 2" ' — 1? Not, unfortunately, that n has to be prime.
(Though this is quite likely to be the case.) The trouble is, whilst Fermat's
result tells us that n divides 2"' — 1 whenever n is prime, it does not say
that there are no composite numbers with the same property. (It is like
saying that all motor cars have wheels; this does not prevent other things
having wheels — bicycles, for instance.) And in fact there are non-primes
which do have the Fermat property. The smallest one is 341, which is not
prime since it is the product of 11 and 31. But if you were to check (on a
computer) you would find that 341 does divide 2**" — 1. (We shall see in
a moment that there is no need to calculate 2**” in making this check.)
Composite numbers which behave like primes as far as the Fermat property
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is concerned are called pseudoprimes. So if, when you test for primality using
the Fermat result, you discover that n does divide 2"~ — 1, then all you
can conclude is that either n is prime or else it is pseudoprime. (In this case
the odds are heavily in favour of n actually being prime. For though there
are in fact an infinity of pseudoprimes, they occur much less frequently
than the real primes. For instance there are only two such numbers less
than 1000, and only 245 below one million.)

Incidentally, it makes little difference if instead of 2 you use some other
number, say 3 or 5, in testing the Fermat property. Whichever number you
use there will be pseudoprimes to prevent you obtaining an absolute answer
to your primality problem.

In using the above test, it is not necessary to calculate the number 2" ',
a number which we have already observed to be very large for even quite
modest values of n. All you need to do is find out whether or not n divides
2""!' — 1. This means that multiples of n may be ignored at any stage of the
calculation. To put it another way, what has to be calculated is the remainder
that would be left if 2"~' — 1 were divided by n. The aim is to see if this
remainder is zero or not, but since multiples of n will obviously not affect the
remainder, they may be ignored. Mathematicians (and computer program-
mers) have a standard way of denoting remainders: the remainder left
when A is divided by B is written as

Amod B.

Thus, for example, 5mod 2 is 1, 7mod4 is 3, and 8 mod4 = 0.
As an example of the Fermat test, let us apply it to test the number 61 for
primality. We need to calculate the number

(2° — 1)mod 61.

If this is not zero, then 61 is not a prime. If it is zero, then 61 is either a prime
or a pseudoprime (and in fact is a genuine prime, as we know already). We
shall try to avoid calculating the large number 2°°. We start with the
observation that 2° = 64, and hence 2°mod 61 = 3. Then, since 2% =
(2°)°, we get

2’ mod 61 = (2°mod61)’mod61 = 3°mod61
243 mod 61 = 60.



