École Supérieure d'Électricité

électromagnétisme

G. Fournet

Préface de A.Blanc-Lapierre

0441 F2

8063515

École Supérieure d'Électricité

ÉLECTROMAGNÉTISME

à partir des équations locales

par

G. FOURNET

Professeur à l'Université Pierre et Marie Curie (Paris VI) et à l'Ecole Supérieure de Physique et Chimie

Préface de A. BLANC-LAPIER RE

E8063515

MASSON

Paris New York Barcelone Milan 1979

Tous droits de traduction, d'adaptation et de reproduction par tous procédés réservés pour tous pays.

La loi du 11 mars 1957 n'autorisant, aux termes des alinéas 2 et 3 de l'article 41, d'une part, que les «copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective» et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale, ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (alinéa 1er de l'article 40).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et suivants du Code pénal.

© MASSON, Paris, 1979. ISBN: 2-225 47058-8

Imprimé en Hongrie

MASSON S.A.
MASSON PUBLISHING U.S.A. Inc.
TORAY-MASSON S.A.
MASSON ITALIA EDITORI S.P.A.

120 Bd Saint-Germain, 75 280 Paris Cedex 06 14 East 60th Street, New York, N.Y. 10 022 Balmes 151, Barcelona 8 Via Giovanni Pascoli 55, 20 133 Milano

PRÉFACE

L'ouvrage du Professeur Gérard Fournet « L'ÉLECTROMAGNÉTISME A PARTIR DES ÉQUATIONS LOCALES » est le second volume à paraître dans la collection — patronnée par l'Ecole Supérieure d'Electricité — d'ouvrages rédigés par des enseignants ou des chercheurs de cette Ecole et consacrés aux développements et aux applications de l'Electricité dans le sens le plus large du terme, c'est-à-dire en englobant l'Electronique, l'Informatique, l'Automatique.... Le premier ouvrage paru dans cette collection a été le résultat d'un travail collectif sur les Antennes, publié sous la direction d'Elie Roubine, Professeur à l'Université Pierre et Marie Curie et à l'Ecole Supérieure d'Electricité, avec la collaboration de MM. J. Ch. Bolomey, S. Drabowitch et C. Ancona.

Gérard Fournet enseigne l'Electromagnétisme à l'Ecole Supérieure d'Electricité depuis 1961. Il est Professeur à l'Université Pierre et Marie Curie et à l'Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris. Il est également responsable de l'option « Electronique des Matériaux » au sein du Diplôme d'Etudes Approfondies « Sciences des Matériaux » organisé en commun par les Universités de Paris VI, Paris VII, Paris XI et Paris XIII, par l'Ecole Supérieure de Physique et Chimie Industrielles de la ville de Paris et par l'Ecole Supérieure d'Electricité. De plus, G. Fournet est Directeur Scientifique du Laboratoire de Génie Electrique de Paris où ses travaux de recherche, qui vont de l'aspect le plus fondamental jusqu'aux applications, portent essentiellement sur l'Electrotechnique, les supraconducteurs et les semiconducteurs.

En écrivant cet ouvrage sur un sujet qu'il a, lui-même, fait progresser, l'auteur met à la disposition du lecteur sa grande expérience dans les domaines de l'enseignement, de la recherche et des applications.

L'exposé de l'électromagnétisme est fait à partir des équations locales générales (équations de Maxwell et une relation énergétique concernant le vecteur de Poynting). Cette façon de faire donne à l'ensemble une grande consistance logique et, à ma connaissance, c'est le premier exposé systématique complètement construit sur ces bases. On sent, d'autre part, toujours présents un grand souci de rigueur et le désir de bien dégager le sens physique des grandeurs introduites et des calculs effectués sur elles.

Enfin, on notera un effort important de l'auteur pour rendre l'ouvrage accessible à l'ensemble de lecteurs le plus large possible. Ceci est, en particulier, très sensible dans l'attitude adoptée vis-à-vis des notations tensorielles : de ce point de vue, ce livre peut tout aussi bien satisfaire le lecteur soucieux de comprendre à fond les phénomènes et ayant toujours à l'esprit l'aspect tensoriel des grandeurs si important pour la présentation relativiste de l'électromagnétisme, le

lecteur désirant simplement retenir les aspects intrinsèques des grandeurs physiques liés à la distinction entre vecteurs polaires et vecteurs axiaux et, enfin, celui qui cherche une expression ou l'explication simple d'un phénomène électromagnétique.

Je suis convaincu que cet ouvrage rendra de grands services à de nombreux lecteurs et je tiens à remercier G. Fournet pour l'effort important qu'il s'est imposé en rédigeant ce livre qui prolongera efficacement l'excellent enseignement qu'il dispense depuis une quinzaine d'années aux élèves de l'Ecole Supérieure d'Electricité.

A. BLANC-LAPIERRE
Membre de l'Académie des Sciences
Professeur à l'Université de Paris Sud
Directeur Général de l'Ecole Supérieure
d'Electricité

AVANT-PROPOS

Il existe déjà un grand nombre de livres d'Electromagnétisme et un nouvel ouvrage dans ce domaine ne peut présenter un réel intérêt que s'il apporte quelque chose de nouveau à un public bien défini. Nous pensons à ce sujet que notre ouvrage qui, d'une part, est destiné aux élèves soit de deuxième cycle des Universités, soit des Ecoles d'ingénieurs et qui, d'autre part, peut servir de base aux non-spécialistes, se signale par les points suivants :

a) L'exposé est entrepris en admettant au départ la validité d'équations locales macroscopiques générales (équations de Maxwell, définition des échanges d'énergie effectués sous forme électromagnétique par le flux du vecteur de Poynting) ; il suffit alors d'ajouter les lois particulières propres à la matière étudiée (exemple non limitatif de ces lois : $\vec{D} = \varepsilon \vec{E}$, $\vec{B} = \vec{B}(\vec{H})$, $\vec{J} = \gamma \vec{E}$) pour pouvoir établir toutes les expressions électromagnétiques régissant cette matière. L'introduction de la relation énergétique liée au vecteur de Poynting permet d'effectuer, pour la première fois à notre connaissance, un exposé complet de l'Electromagnétisme à partir de lois purement locales. Le grand avantage de ce choix est que la validité de chaque raisonnement et le domaine d'application de chaque expression sont parfaitement déterminés puisqu'on connaît toutes les hypothèses qu'il a fallu effectuer au sujet du comportement de la matière pour les établir.

Ajoutons encore que, étant donné le développement de l'Electricité en premier cycle ou dans les classes de préparation aux grandes écoles, nous croyons qu'il est nécessaire d'adopter notre plan d'exposition ou un plan voisin pour maintenir et développer l'intérêt des élèves pour l'Electromagnétisme au niveau du deuxième cycle ou des écoles d'ingénieurs.

b) Nous avons consacré quelques développements aux notions de variance tensorielle dont on connait l'importance en physique : l'utilisation des tenseurs est indispensable pour comprendre l'électromagnétisme relativiste (c'est-à-dire l'électromagnétisme). En considérant que les règles tensorielles n'autorisent que quelques types de relations différentielles entre les grandeurs physiques, nous avons même pu « presque démontrer » a priori les équations de Maxwell et en tout cas montrer que ces équations étaient les premières (c'est-à-dire les plus simples) à considérer pour tenter de décrire les phénomènes électromagnétiques. Par ailleurs, on sait depuis longtemps que des considérations ten-

sorielles démontrent définitivement (!) que \breve{B} et \breve{H} par exemple ne peuvent être confondus.

En étant réaliste, nous avons rédigé notre livre de façon qu'il puisse être lu simultanément par trois catégories de lecteurs : le lecteur ayant fait l'effort d'acquérir quelques notions sur les tenseurs et pouvant ainsi atteindre une compréhension synthétique des phénomènes électromagnétiques, le lecteur ne désirant prendre en compte que la distinction entre les vecteurs polaires et les « vecteurs axiaux », ce qui permet encore de bien saisir une partie de la réalité physique, le lecteur négligeant toutes ces précautions et soucieux avant tout de prévoir le fonctionnement d'un dispositif.

- c) Il existe deux présentations possibles de l'Electromagnétisme de la matière. Dans la première, on considère d'abord les grandeurs électriques microscopiques (« champs à petite échelle ») définies en principe à une échelle subatomique : dans ce cas la « matière » paraît être constituée de particules situées dans le vide, ce qui entraîne des simplifications, mais il reste ensuite à calculer des moyennes pour obtenir les grandeurs macroscopiques observables. L'autre présentation consiste à considérer directement les grandeurs macroscopiques. Nous avons adopté ce dernier point de vue dans les cinq premières parties de l'ouvrage en réservant toutefois sa dernière partie au « microélectromagnétisme ». Si, de façon générale, le rapprochement des deux points de vue entraîne toujours de fructueuses comparaisons, il faut absolument pouvoir passer d'une présentation à l'autre pour comprendre l'état supraconducteur de la matière pour lequel la distinction entre, d'une part, les grandeurs macroscopiques \vec{B} et \vec{H} et, d'autre part, le champ magnétique « à petite échelle » \vec{h} est essentielle. Nous avons ainsi pu terminer notre livre par une introduction à la physique des supraconducteurs.
- d) Nous avons pris beaucoup de soin pour essayer de présenter des raisonnements rigoureux; nous avons été ainsi conduits à revoir toutes les démonstrations traditionnelles et par conséquent toutes les erreurs ou fautes qui restent dans notre livre sont personnelles et non dues à nos prédécesseurs. Par ailleurs nous avons toujours cherché à obtenir des expressions dont la signification soit intrinsèque, c'est-à-dire indépendante de toute convention de signe ou de système.
- e) Dans un domaine aussi traditionnel que l'Electromagnétisme, il semble difficile d'obtenir des résultats fondamentalement nouveaux. Notons cependant que le plan adopté nous a obligé à élaborer de nouvelles démonstrations. Par ailleurs la définition des flux d'induction magnétique au travers d'un circuit réel, c'est-à-dire non filiforme, est très simple quand on part, comme dans cet ouvrage, de considérations énergétiques alors que ce peut être un exercice périlleux et en tout cas difficile par d'autres méthodes. Sur d'autres points nous pensons avoir approfondi ou étendu les résultats classiques : la quasi démonstration des équations de Maxwell, l'examen de la question de l'existence ou de la non existence des phénomènes superficiels (densités superficielles de charge,

de courant), les groupements de condensateurs (où les résultats habituels sont faux en principe mais numériquement quasi exacts), l'expression de l'inductance propre d'un tore à section circulaire (où nous avons retrouvé par des méthodes un peu plus élaborées identiquement l'expression classique obtenue par des considérations très approchées) etc...

L'étendue de l'ouvrage a été limité afin de correspondre à environ 50-60 heures de cours appuyées sur 40 heures de travaux dirigés. Nous avons choisi d'exposer les phénomènes de base en nous limitant à ce qui peut être enseigné sans faire appel à la mécanique quantique. Pour les différentes applications nous nous sommes bornés à montrer comment les relations générales les gouvernent sans entrer dans des détails technologiques ou dans la description de méthodes de calculs.

Pour consulter facilement notre livre le lecteur doit savoir que dans chacune des six grandes parties:

- chaque chapitre est repéré par une lettre majuscule (Ex. C)
- chaque section d'un chapitre, par un chiffre romain (Ex. IV)
- chaque paragraphe (§) d'une section par une lettre minuscule (Ex. a). Les différentes expressions sont numérotées de (l) à (n) pour chaque chapitre; la citation d'une expression étant indiquée par son rang (r) pour une expression du même chapitre et par [(r) p. 98] pour une expression d'un autre chapitre et se trouvant page 98. Dans l'ensemble de l'ouvrage les figures sont numérotées de l à 155 et les tableau de I à XVII.

Il m'est agréable de terminer en remerciant toutes les personnes qui m'ont aidé ou permis de rédiger ce livre; M. A. BLANC—LAPIERRE qui a bien voulu rédiger la préface, M. A. GUINIER qui m'a initié à l'enseignement de l'Electromagnétisme dans le cadre de l'ancien Certificat d'Electricité Générale, M. P. OLMER qui m'a confié l'enseignement correspondant à l'Ecole Supérieure d'Electricité. Je dois beaucoup aux discussion que j'ai eues soit avec des chercheurs du L.G.E.P. (MM. BAIXERAS, BARTHELEMY, CHABRERIE, DUPART,...) soit avec les diverses personnes qui depuis 16 ans ont été chargées des travaux dirigés sur mon cours à l'E.S.E. et je veux citer plus spécialement MM. BERGER, BOLOMEY, COAT et LECUILLER. Je remercie enfin pour la part qu'ils ont prise soit à la conception, soit à la réalisation des figures Mme Bizi, MM. BODIN, CARISTAN ainsi que Mme LE BAUZEC qui a eu le mérite de toujours réussir à interpréter mes manuscrits.

Avant-Propos	XV
Première Partie. — Lois générales	1
A. — Présentation générale	1
I. — Lois locales et lois globales II. — Densités microscopiques et macroscopiques	1
B. — Enoncé des lois locales macroscopiques	2
I. — Equations de Maxwell macroscopiques II. — Relations liées à l'état de la matière III. — Relation énergétique	2 5 6
C. — Vecteurs polaires et vecteurs axiaux	7
I. — Définitions	7
II. — Produit vectoriel \vec{c} de deux vecteurs polaires \vec{a} et \vec{b}	8 11
D. — Tenseurs	12
I. — Introduction	12
 II. — Système d'axes rectilignes en géométrie affine	14
III. — Système d'axes curvilignes en géométrie affine	18
IV. — Système d'axes curvilignes quelconques en géométrie métrique Définition des g_{ik} formant le tenseur métrique fondamental (23). Propriétés et rôles des g_{ik} (24).	. 23
V. — Système d'axes curvilignes orthogonaux en géométrie métrique VI. — L'aspect tensoriel des grandeurs électriques (espace à trois dimensions) VII. — Peut-on démontrer les équations de Maxwell?	27 29 31 35 39
E. — Produit de vecteurs	40
I. — Produit scalaire	41

II. — Flux d'un vecteur	42
III. — Produit vectoriel	44
de deux vecteurs axiaux (46). IV. — Nature vectorielle d'un rotationnel	46
F. — Théorèmes généraux I. — Théorème de Gauss II. — La notion de flux d'induction magnétique au travers d'un contour III. — La circulation du champ électrique IV. — La circulation du champ magnétique V. — Grandeurs intervenant dans les théorèmes généraux	47 47 47 48 49 49
G. — Relations de passage d'un milieu à un autre I. — Déplacement électrique II. — Induction magnétique III. — Champ électrique IV. — Champ magnétique V. — Grandeurs intervenant dans les relations générales de passage	49 50 51 51 52 53
H. — Thermodynamique, énergies, forces I. — Les principes et leurs conséquences II. — L'énergie et les potentiels thermodynamiques III. — Forces	55 55 57 58
DEUXIÈME PARTIE. — Electrostatique A. — Généralités I. — Définition du domaine II. — Relations générales III. — Notion de potentiel électrique IV. — Energies Energie libre (64). Energie électrique de Gibbs (65).	61 61 61 62 64
V. — Programme de travail B. — Electrostatique du vide I. — Equations de Laplace et Poisson II. — Unicité de la solution III. — Déplacement, champ et potentiel électriques Cas d'une charge isolée (68). Ensemble de charges (71). Répartition continue d'une densité de charge (72). Quelques exemples (73).	65 66 66 66 68
IV. — Energie libre \mathscr{F}_e	
V. — Forces	81
 VI. — Dipôles	
C. — Conducteurs en équilibre dans le vide	93 93
I. — Cadre de l'exposé et définitions	93

	riétés des conducteurs en équilibre (aspect macroscopique)	93
	riétés des conducteurs en équilibre (indications sur l'aspect micro-	
Ţ	que)	
IV. — Influe A I	ence électrique $(\varrho_v = 0)$	98
V. — Méth T d F d d	odes de calcul	
I la C	lensateurs	
VII. — Energ	gie électrostatique ($\varrho_v = 0$)	143
E	es entre conducteurs	144
D. — Diélectriqu	ues et conducteurs	148
P la	isation des diélectriques	148
C	p et déplacement	154
C P (1 is	ition de passage d'un milieu à un autre	157
et des C ti p d	rtition des grandeurs électriques entre des conducteurs en équilibre s' diélectriques idéaux isotropes	160
C d u	ie électrostatique	168
D is	s dans les diélectriques	174

de Maxwell dans un fluide diélectrique idéal (183). Contribution électrostatique aux contraintes élastiques dans un solide (185). Résultante des forces électrostatiques agissant sur un morceau de diélectrique solide (185).	
VII. — Machines électrostatiques	187
E. — Le courant électrique	189
I. — Densité de courant	
II. — Loi d'Ohm en absence d'induction magnétique	190
III. — Distribution de courant et de potentiel dans un conducteur obéissant à la loi Ohm et traversé par un courant stationnaire	
Troisième Partie. — Magnétostatique	
A. — Généralités	201
I. — Définition du domaine II. — Relations générales et théorème d'Ampère III. — Lignes de courant, tubes de courant, éléments de courant IV. — La notion de potentiel vecteur V. — Energie Energie libre (205). Energie magnétique de Gibbs (207).	203 204
R — Magnétostatique du vide	208
I. — Le potentiel vecteur \vec{A}	208
II. — L'induction magnétique B	213
 III. — Le champ (ou excitation) magnétique H. IV. — Le potentiel magnétique V. V. — Exemples de calcul de champ magnétique Utilisation de la loi de Biot et Savart (219). Utilisation du potentiel magnétique (220). Utilisation du théorème d'Ampère (225). 	214 214 219
VI. — Les masses magnétiques	
VII. — Energies magnétiques	•
VIII. — Forces magnétiques	-
C. — Circuits électriques dans le vide	. 240
I. — Cadre de l'exposé et définitions II. — Flux d'induction au travers d'un circuit électrique	

IV. — Inductance mutuelle	243 s
 V. — Inductance propre Définition (248). Etude de l'inductance propre (248. Calcul des inductances propres (249). 	248
VI. — Les expressions des différents types de flux	255
VII. — Energie d'un ensemble de circuits	
VIII. — Détermination des forces agissant sur les circuits	256 t
IX. — Forces agissant sur les particules d'un conducteur soumis à un champ magnétique	. 262
D. — Matières aimantées et conducteurs	267
I. — Aimantation de la matière	267
L'intensité d'aimantation M (267). Aspect tensoriel (268). Programme de travail (269).	
 II. — Présentation de l'aimantation de la matière au moyen des courants fictifs ampériens. Les densités de courants fictifs J_a et J_{sa} (269). Induction magnétique (273). Champ (ou excitation) magnétique (274). Cas des substances magnétiques idéales isotropes (275). Cas général des substances magnétiques idéales (276). Relations locales pour les principaux milieux (277). 	269
(277). III. — Passage d'un milieu à l'autre	
IV. — Présentation de l'aimantation de la matière au moyen des masses magnétiques fictives	280
 V. — Relations entre les représentations du magnétisme et celles de l'électrostatique. Différence entre les deux représentations de la matière aimantée (283). Analogie entre la magnétostatique et l'électrostatique (285). Exemples d'application des deux représentations (286). 	283
VI. — Equilibre des substances aimantées idéales isotropes	•
VII. — Energie magnétostatique	S
VIII. — Forces dans les substances magnétiques	•
IX. — Substances ferromagnétiques	t

QUATRIÈME PARTIE — Etats quasi stationnaires	305
A. — Définition	305
D Relations générales	300
C. — La loi de Faraday	307
I. — Enoncé	
III. — Démonstration de la loi de Faraday	307
CINQUIÈME PARTIE — Les phénomènes variables en fonction du temps—Propagation	314
A. — Les équations de base	314
I. — Equations de Maxwell	J
III. — Equation régissant le champ magnétique H IV. — Les potentiels \vec{A} , V et les transformations de jauge V. — Equation régissant le potentiel vecteur \vec{A} VI. — Equation régissant le potentiel scalaire V VII. — Echanges d'énergie VIII. — Introduction de la notion d'une vitesse de propagation dans le vide IX. — Simplification d'écriture des équations dans le cas du vide	316 317 317 318 319
B. — Détermination des potentiels dans le cas des substances idéales isotropes uniformes	320
I. — Phénomènes indépendants du temps	320
retardés III. — Justification des expressions des potentiels retardés.	321
C. — Electromagnétisme relativiste	327
Drécentation succincte de la relativité restreinte	341
Postulats de la relativité restreinte (327). Transformation de Lorentz (328). Critique de la notion de simultanéité (329). Critique de la notior de longueur (329). Critique de la notion d'invariant (330). Formes tensorielles (330). Application aux grandeurs mécaniques (331).	z n s
II. — Application de la relativité à l'électromagnétisme du vide	
D. — Phénomènes de propagation par onde plane	. 341
I. — Propagation par onde plane	. 341
II — Propagation par onde plane électromagnétique dans un milieu uniform idéal isotrope isolant	. 344 >- >t
intrinsèque des phénomènes (349). Considérations énergétiques (351)). ie
 III. — Propagation par onde plane électromagnétique dans un milieu uniform idéal isotrope et résistant. Equations générales (351). Comportement du champ électrique (352 Comportement du champ magnétique (353). Considérations énergé tiques (354). Aspect intrinsèque (355). Cas où γ/ωε est grand devar l'unité (357). Cas où γ/ωε est petit devant l'unité (358). 	. 331). é- nt
IV. — Constitution du rayonnement lumineux	. 335
E. — Courants de Foucault et chauffage par induction	. 359
I. — Présentation physique des phénomènes	. 360
II. — Etude d'une plaque d'épaisseur infinie).)).

III. — Etude d'une plaque d'épaisseur constante finie	. 364
IV. — Etude d'un barreau cylindrique	i.
F. — Effet de peau	. 374
I. — Description physique du phénomène	. 374
II. — Effet de peau au voisinage d'une surface plane d'un conducteur de grandépaisseur	. 375
III. — Effet de peau dans une plaque d'épaisseur constante finie	381
IV. — Effet de peau dans un fil à section circulaire	384
G. — Transmission d'une onde électromagnétique d'un milieu à un autre	387
I. — Définition du problème	
II. — Aspect géométrique des ondes-réponse	s - t t
III. — Energétique des ondes-réponse Résultats généraux (399). Transmission de l'énergie d'un milieu isolan à un autre milieu isolant (403). Transmission de l'énergie d'un milieu isolant à un milieu bon conducteur (406). Energie transmise d'un milieu isolant à un milieu bon conducteur (409). Densité superficielle de courant dans les bons conducteurs (410).	t 1 1
IV. — Bons conducteurs et conducteurs parfaits. Définitions (412). Champ électrique (413). Champ magnétique (414) Echanges énergétiques (414). Méthode de résolution d'un problème (414).	
H. — Propagation guidée	415
I. — Introduction	415
II. — Lame d'ondes	415
III. — Guide d'ondes à section rectangulaire	
IV. — Guide d'ondes à section circulaire Introduction (425). Onde magnétiquement transversale (426). Onde électriquement transversale (428). Résolution d'un problème donné (428).	:
 V. — Guide d'ondes à section quelconque	
VI. — Câble coaxial	

VII. — Lignes de transmission	436
VIII. — Prise en compte de conducteurs réels	445
IX. — Cavités	445
I. — Phénomènes d'émission	446
I. — Présentation	
II. — Dipôle oscillant	
III. — Les potentiels V et \vec{A}	447
IV. — Calculs des différents champs	449
Le champ électrique \vec{E} (449). L'induction magnétique \vec{B} (450).	
 V. — Cas où les distances entre la source et le point d'observation sont faibles devant la longueur d'onde	451
devant la longueur d'onde	451
VII. — Echanges d'énergie	
VIII. — Antennes	
Sixième Partie — Electromagnétisme microscopique	455
A. — Présentation et définition de l'échelle microscopique	455
B. — Les équations de Maxwell à l'échelle microscopique	456
I. — Enoncé des lois microscopiques	
II. — Calcul et propriétés des moyennes des grandeurs microscopiques	456
III. — Liens entre les grandeurs microscopiques et les grandeurs macroscopiques	
IV. — Comparaison entre ces grandeurs	459
V. — Conditions de correspondance	
VI. — Energies	
VII. — Choix du système de représentation	
C. — Application aux supraconducteurs	462
I. — Rappel des faits expérimentaux relatifs au plomb	
 II. — Un aperçu théorique	
BIBLIOGRAPHIE	471
ATREV	473

PREMIÈRE PARTIE

LOIS GÉNÉRALES

A. — PRÉSENTATION GÉNÉRALE

I. - LOIS LOCALES ET LOIS GLOBALES

Le but de l'électromagnétisme est de rechercher les lois qui régissent les phénomènes électriques au sens large du terme; ces lois peuvent avoir, soit un aspect global et intégral: l'intensité du courant qui parcourt tel circuit est égal à ..., soit un aspect local: la densité de courant en un point M de tel milieu s'obtient à partir de la valeur du champ électrique en ce point au moyen de Les lois globales sont celles qui, d'une part, intéressent l'utilisateur d'un dispositif et qui, d'autre part, peuvent être directement établies par l'expérience, mais par contre seule la connaissance des lois locales permet de comprendre et de prévoir dans tous les cas le fonctionnement et les propriétés d'un ensemble. C'est pour cela que dans cet ouvrage nous avons choisi de baser l'exposé sur l'utilisation exclusive de lois locales.

II. — DENSITÉS MICROSCOPIQUES ET MACROSCOPIQUES

Les lois locales sont obligatoirement liées à des densités volumiques : par exemple les phénomènes électrostatiques sont régis par la densité volumique de charge électrique ϱ . La définition de cette densité ϱ exige beaucoup de soins. Sans prendre de précaution, la densité de charge $\varrho(M)$ en un point M est « définie » par la limite de $\frac{dQ}{dv}$, dQ étant la quantité de charge électrique contenue dans le volume dv, quand la surface qui limite ce volume tend vers le point M. Cette « définition » est ambiguë et, lorsqu'elle est prise au sens strict mathématique, entraîne un grand nombre de complications souvent inutiles. Considérons, à titre d'exemple, un solide métallique ; dans les exposés élémentaires, on indique que dans ce type de conducteur ϱ est nul; il est facile de s'opposer à cette proposition quand on sait que le solide considéré peut être décrit comme un ensemble d'ions positifs entre lesquels se trouvent des électrons négatifs, les distances mutuelles entre les ions les plus proches étant de l'ordre de 3 Å; quand le point M est à l'extérieur des ions positifs et si le volume dv est négligeable devant (3 Å)³, $\varrho(M)$ est négatif; sous la même condition pour dv, q est positif en d'autres points. Le paramètre essentiel dans la détermination de ϱ est donc l'ordre de grandeur de dv: