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INTRODUCTION

Approximation algorithms have developed in response to the impossibility of solving
a great variety of important optimization problems. Too frequently, when attempting to
get a solution for a problem, one is confronted with the fact that the problem is NP-hard.
This, in the words of Garey and Johnson, means *I car.’t find an efficient algorithm, but
neither can all these famous people” ([GI79] p. 3). While this is a significant thearetical
step, it hardly qualifies as a cheering piece of news.

If the optimal solution is unattainable then it is reasonable to sacrifice optimality
and settie for a “good” feasible solution that can be computed efficiently. Of course,
we would like to sacrifice as little optimality as possible, while gaining as much as
possible in efficiency. Trading-off optimality in favor of tractability is the paradigm of
approximation algorithms.

The main themes of this book revolve around the design of such algorithms and the
“closeness” to the optimum that is achievable in polynomial time. To evaluate the limits
of approximability, it is important to derive lower bounds or inapproximability results.
In some cases, approximation algorithms must satisfy additional structural requirements
such as being on-line, or working within limited space. This book reviews the design
techniques for such algorithms and the developments in this area since its inception about
three decades ago.

— I
WHAT CAN APPROXIMATION ALGORITHMS
DO FOR YOU: AN ILLUSTRATIVE EXAMPLE

N o

Consider the following problem that motivates the study of approximation algorithms
and also happens to be the first ever treated in the approximation algorithms framework.

Picture yourself at 9 a.m., on ihe shop fioor, facing 8 machines that will be ready for
work at 10 a.m., and 147 jobs of various durations waiting to be processed. There is a
9 p.m. basketball game on TV which you would hate to miss, but you have to stay until
all the jobs are finished. You would want to assign jobs to machines so that you can get
home as early as possible.

xiii



xiv INTRODUCTION

However, there is one catch: the problem is an instance of the well-known minimum
makespan problem which is NP-hard. Being NP-hard means not only that there is no
known efficient algorithm for solving the problem, but also that it is quite unlikely that
one exists.

. Given that this optimization problem is NP-hard, what is the next step? For years
NP-hard problems were treated with integer programming tools or “heuristics.” Integer
programming toels are forms of implicit enumeration algorithms that combine efficient
derivations of lower and upper bounds with a hopeful search for an optimal solution. The
amount of time required to solve even a typical moderate-size optimization problem is
exorbitant. Instead, the user interrupts the enumeration process either when the current
solution is deemed satisfactory, or when the running time has exceeded reasonable limit.
The point is that integer programming algorithms provide no guarantee. It is impossi-
ble to tell if 5 additional minutes of running time would get you a significantly better
solution, or if 5 more days of running time would yield no improvement at all.

Besides the issues of guarantee of guality of solution and reasonable running time,
the classic integer programming tool, Branch-and-Bound, needs good bounds which
are feasible solutions as well as good estimates of the value of the opimum (lower
bounds for minimization problems—upper bounds for maximization). Approximation
algorithms address both the issue of guarantee and of making good feasible solutions
available. The analysis of approximation algorithms always involves deriving estimates
on the value of the optimum. As such, approximation algorithms and their analysis are
useful in traditional integer programming techniques.

..back on the “floor” the time is a few minutes before 10:00 a.m. and it is too late to
start running a branch-and-bound procedure since you may end up worse off compared
to a solution that you can quickly guess. Indeed how about using some rules of thumb to
guess a reasonable solution? Say, place any job on any machine as soon as the machine
becomes available. That sounds sensible, but a quick calculation shows that the machine
that finishes last will do so at 10 p.m. It would certainly help to get a clue as to how
much better an optimal schedule value can be, even if the schedule itself is unattainable.
In essence we would like to know how good is the solution delivered by the above rule
compared to the optimum. Indeed, Graham proved in 1966 [Gra66] that this rule gives a
solution with relative error no more than 100%. In other words, while the rule delivers a
schedule lasting 12 hours, the optimum could be as short as 6 hours, but no less. At this
point you are assured that no solution will get you off before 4 p.m.

Heuristics is the nomenclature for rules-of-thumb which in itself is a euphemism for
simple and invariably polynomial-algorithms. Heuristics work quickly and efficiently.
The quality of the solution they deliver is another matter altogether. Prior to the advent
of the approximation algorithms’ method of analysis, the performance of a heuristic was
Judged by-runining it on a benchmark set of problem instances and comparing it with the
performance of other heuristics on the same benchmark.

The obvious setbacks to such an approach were already evident in the pre-com-
plexity days. The benchmark set is typically a small sample which is not necessarily a
good representative of general problem instances. In addition, improvements in the qual-
ity of a solution as measured by the benchmark set are not necessarily a good predictor
of possible improvements in general cases. There was clearly a need for well-defined
analysis to evaluate the quality of heuristics. When such an analysis emerged it had the
added benefit of enhancing our understanding of the problem and providing insight as
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to what makes a solution “right.” This insight made it possible to improve the heuris-
tics and the integer programming algorithms. On the other hand, many heuristics with
excellent empirical performance have so far eluded formal analysis.

Garey, Graham, and Ullman [GGU72] and later Johnson [Joh74]) formalized the
concept of an approximation algorithm. An approximation algorithm is necessarily poly-
nomial, and is evaluated by the worst case possible relative error over all possible in-
stances of the problem. An algorithm A is said to be a §-approximation algorithm for a
minimization problem P if for every instance / of P it delivers a solution that is at most é
times the optimum. Naturally, § > 1 and the closer itis to 1, the better. Similarly, for max-
imization problems a §-approximation algorithm delivers for every instance / a solution
that is at least & times the optimum. In that case § < 1. & is referred to as the approxima-
tion ratio, or performance guarantee, or worst case ratio, or worst case error bound, or
approximation factor. For the maximization problem it is also common to refer to 1/6
as the approximation factor.

_As stated above, the sensible rule described for the minimum makespan problem
gives a solution with relative error no more than 100%. As such, it is a 2-approximation
algorithm. (Details on the analysis of this approximation algorithm, called List Schedul-
ing algorithm, are given in Chapter 1.) Graham further showed that a different heuris-
tic that assigns the longest remaining job to the first available machine gives a better
worst case error ratio of 4/3. With this slightly modified rule you get a 10-hour sched-
ule that ends at 8 p.m. Furthermore, now you know that the best solution—the optimum
schedule—will last 7 and a 1/2 hours and thus will not end before 5:30 p.m.

For the minimum makespan problem, considerably better approximation algorithms
have been devised by Hochbaum and Shmoys [HS87]. They described a family of ap-
proximation algorithms for the minimum makespan problem so that algorithm A4, is a
(1 + €)-approximation algorithm (Section 9.3.2 contains a description of this family of
algorithms). This means you can get an error as small as you like, but have to pay sig-
nificantly in terms of increased running time. The rate of increase in running time is a
known function of ¢, so one can decide on the appropriate trade-off for the situation. For
instance, an algorithm that guarantees a ratio no more than 6/5 works in several hundred
steps (more precisely, in O(n logn) steps for n jobs) and hence can deliver a solution in a
fraction of a second with a guarantee of no more than 20% relative error (this specific al-
gorithm is described in (HS87]). Applying that 6 /5-approximation algorithm gives you
an assignment of the 147 jobs that is 9 hours long, terminates at 7 p.m. and guarantees
that the optimum is no earlier than 5:30 p.m. Considering it satisfactory you can use this
schedule, or, if there is still time till 10 a.m., run one of the better approximation algo-
rithms in the family to see if it results in yet a better schedule. Even if not, we at least
end up with a higher estimate for the finish time of the optimum, thus reducing “regret.”

This trade-off family of algorithms is called an approximation scheme. While such
success is not typical for other NP-hard problem it demonstrates that the detailed analysis
and insight gained lead to the generation of this tool of approximation scheme for the
makepsan problem. With the increased interest in the area of approximation algorithms,
more and more empirically successful heuristics for other problems are being analyzed
and theoretically understood. This results in the ability to derive closer to optimum
solutions for these problems than previously done.

Having introduced informally the main concepts, we now proceed to a more sys-
ternatic introduction of the basic definitions.
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| -
FUNDAMENTALS AND CONCEPTS

N o]

Foremost among the concepts is that of a §-approximation algorithm. An approximation
algorithm is always assumed to be “efficient” or more precisely, polynomial. We also
assume that the approximation algorithm delivers a feasible solution to some NP-hard
problem that has a set of instances {/}.

DEFINITION .1 A polynomial algorithm, A, is said to be a §-approximation algo-
rithm if for every problem instance / with an optimal solution value OPT({),

OPT{) < 6.

As mentioned before, 8§ > 1 for minimization problems and < | for maximization
problems. The smallest value of § is the approximation (or performance) ratio R 4 of the
algorithm A.

The value of § is referred to by any of the following terms or their variations

& Worst case bound

& Worst case performance

® Approximation factor

& Approximation ratio

e Performance bound

e Performance ratio

@ Error ratio
and several others.

For maximization problems, sometimes é is considered to be the approxmiation
ratio/factor.

Unless otherwise specified, we always mean for é to be the absolure performance

ratio. However, in some cases the error involves an additive term. In those cases the
notion of asymptotic performance ratio is relevant.

DEFINITION 0.2 The absolute performance ratio, R 4, of an approximation algo-
rithm A4 is,
R =inf{r > 1|R4(I') <r for all problem instances /}.
and the asymprotic performance ratio R%, for A is,
RY =inf{r = Ij3n € ZY R <r¥lstI=>n).
In Chapter 9 we illustrate examples where the difference between these two ratios
is significant. For online algorithms there is an analogous concept of competitive ratio .

{asympitotic). There, however, the input instance is a sequence and the comparison is to
the performance of an optimal offline algorithm on the same sequence, rather than to an
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optimal solution value. Chapter 12 provides details on the motivation and definition of
this concept.

The concept of R 4 is a worst case notion meaning that it suffices to have a single
“bad” instance to render the value of & larger than it is for all other encountered instances.
Typically, the observed performance of an approximation algorithm, as reflected in the
gap between the optimal solution and the delivered solution, is considerably better than
would be indicated by the performance ratio. This has been evident in every experimen-
tal study on specific problem instances. Ideally we would like to be-able to predict the
actual performance of the algorithm.

One way of addressing this concern is through the use of average case analysis.
In average case analysis we assume knowledge of the distribution of the problem’s
instances. This knowledge permits a tightening of the assessment of the optimal value as
well as allows for tailor-fitting algorithms to the-features of the distribution. Average case
analysis is illustrated in Chapter 2 of the book, primarily for the bin packing problem.

The efficiency of an approximation algorithm is another important issue. While
we assume that every approximation algorithm is polynomial, there is a vast variety of
polynomial algorithms some of which are decidedly inefficient and impractical. Within
the range of “practical” polynomiality we may want to invest more running time in
order to get a better approximation bound. Such a trade-off comes in several versions
of approximation schemes.

'DEFINITION 0.3 A family of approximation algorithms for a problem P, {A¢]., is
called a polynomial approximation scheme or PAS, if algorithm A, is a (14 €)-approxi-
mation algorithm and its running time is polynomial in the size of the input for a fixed €.

DEFINITION 0.4 A family of approximation algorithms tor a problem P, {A¢]., is
called a fully polynomial approximation scheme or FPAS, if algorithm A, is a (1 +¢€)-
approximation algorithm and its running time is polynomial in the size of the input
and 1/¢.

When a FPAS is a family of randomized algorithms it will be called fully polynomial
randomized approximation scheme or FPRAS. In that case the approximation is guaran-
teed with probability that is large enough (e.g. 3/4 as in Chapter 12). Chapter 9 discusses
examples of PAS and FPAS, and Chapter 12 discusses examples of FPRAS. Chapter 10
reviews the class of Max-SA/ P-hard problems that cannot have PAS, unless NP = P.

Lower bounds on approximability are a major concern as we always want to know
whether a better approximation exists which we simply failed to identify, or if better
approximations are impossible. For a large pumber of important problems there have
recently been a slew of discouraging results in the sense that their approximability limits
are quite bad. Among these problems the maximum clique is prominent. In the maximum
clique problem the aim is to find the largest number of vertices in a graph all of which are
linked with each other via edges. A trivial solution, and not a very good one, is to take a
single vertex as the clique. The inapproximability results demonstrate thatunless NP = P
we cannot guarantee to do substantially better. This problem, and the recent techniques
for proving lower bounds, are the main topics of Chapter 10. More traditional techniques
that prove lower bounds on approximability are described in Chapter 9.
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In a number of practical situations an algorithm is required to have a specific struc-
ture. For instance, when the data instance is not available a-priori, then the decision, or
the algorithm, has to be executed on-line with only partial information. This is, for ex-
ample, the case with the minimum makespan problem when jobs arrive continually and
the machines have to be assigned and running without waiting for the stream of jobs to
end. Graham’s 2-approximation algorithm previously described offers the extra bonus
of also being on-line: a job in the pool is assigned to the first avatlable machine. When
we want to assess the performance of an on-line algorithm the notion of worst case ratio
is inappropriate as it would be meaningless to compare the solution delivered by such
algorithm with optimal value that does not depend on the arrival sequence of the jobs.
Instead we compare it with an optimal algorithm that is off-line, meaning that it has the
a-priori information about the sequence of the arriving jobs. For this purpose the concept
of competitive ratio and related concepts are introduced (see Chapter 13) for analyzing
on-line problems. These concepts measure the effects of partial information.

Other types of approximation algorithms are required to work in restricted space or
in dynamic fashion. Such algorithms, as well as several other interesting variants, are
described in Chapter 2.

Randomized algorithms were found to be extremely useful in general algorithm de-
sign (see the recent book by Motwani and Raghavan [MR95]). These algorithms make
random choices during execution. In the context of approximation algorithms, the ran-
domized approach had a dramatic affect in introducing novel approaches. Randomiza-
tion is generally combined with the continuous techniques of linear programming and
semidefinite programming. Randomized algorithms are also the only algorithms known
that provide any sort of estimate for solutions to counting problems. Problems, such as
counting the number of perfect matchings in a graph or assessing the volume of a poly-
tope are harder than the corresponding optimization problems. For the few instances
when solutions are known (Chapter 12) they are achieved via randomized techniques.

Finally, the continuous optimization problems of linear programming and semidef-
inite programming are of prime importance in approximations. Since it is possible to
formulate optimization problems as integer programming, linear programming relax-
ations, (in which the requirement of integrality is omitted), provide a bound (lower bound
for a minimization problem, upper bound for maximization). If a semidefinite program-
ming relaxation of the problem.is known, then the bound is frequently tighter (closer
to the actual optimum) than that obtained by linear programming. It is likely that other,
more general, nonlinear relaxations can be tighter still, but for that to be useable, those
nonlinear problems need to be solvable in polynomial time. This is promising to be the
direction of future developments in approximations.

The reader will need to have some background in linear programming, as pertains
to duality theory, and the knowledge that the problem is polynomial. A good introduc-
tion to linear programming is given in a recent book by Saigal [S95]. For semidefinite
programming the relevant references are mentioned in Chapter 11.
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_ mmaa
OBJECTIVES AND ORGANIZATION OF THIS BOOK

o

This book is aimed at practitioners interested in specific application areas, as well as
the computer science and operations research community interested in design tools for
algorithms in general and approximation algorithms in particular. Our goal here is to
layout the variety of approaches and techniques that are typical and most effective for
approximations.

The variety and versatility make it difficult to navigate in this area. One goal of
this book is to introduce a framework; review of applications and unifying techniques
in the analysis of approximation algorithms. Such unifying features have only emerged
recently as the area has matured.

The chapters in this book are written so as to be self-contained to the greatest ex-
tent. Each chapter has its own list of references that provide a perspective on the work
done in the particular subarea. The reader is assumed to have prior background in the
design and complexity of algorithms, as well as in linear programming and stochastic
processes. Each chapter gives references to appropriate tutorial material. There are ex-
ercises scattered throughout the text that highlight important extensions or ask the reader
to verify some of the claims.

The chapters of the bock can be read in any order. The reader can identify specific
techniques or problems of interest in the index and in the glossary of problems that
include pointers to chapters where the problems are discussed. The glossary is arranged
in an alphabetical order relating to some particular key words in the problem title. The
glossary, however, is not organized by topics and it may be necessary to use the index in
order to pinpoint a specific problem definition.

The first three chapters follow the chronological developments in the field. We chose
to have the topic of scheduling as the opening chapter since scheduling problems were
the first historically to be analyzed for approximations. The area of scheduling has re-
mained very active and novel techniques have been devised and used. Chapter 1, indeed,
reviews the early work, but is mostly devoted to the discussion of recent developments.
Another problem that was extensively analyzed in the early days of approximation al-
gorithms analysis is the bin packing problem. Chapter 2 focuses on this problem and its
extensions. It is the only chapter to cover average case analysis, for which bin packing
has been a showcase problem. The chapter also reviews on-line algorithms that are space
restricted and dynamic algorithms and open versus closed on-line algorithms.

The set cover problem has been considered one of the most prominent problems
in optimization. The first algorithm to use linear programming and duality was devised
for this problem and its special case—the vertex cover problem. Not surprisingly, this
algorithm came shortly after the discovery that linear programming is a polynomial prob-
lem.While the performance of the first algorithms was not improved since the early
1980s, there has been substantial progress on specially structured set cover problem, as
well as for the vertex cover problem and it complement—the independent set problem.
Chapter 3 reviews these algorithms and provides an up-to-date summary of best approxi-
mations. It includes an analysis that explains the particular usefulness of linear program-
ming relaxation for the vertex cover and independent set and other integer programs with
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two variables per inequality. The chapter also reviews the important greedy algorithm
and its properties.

Chapter 4 presents refinements of the linear programming based technique de-
scribed in Chapter 3. It describes a number of problems in the context of network design
applications, that can be posed as covering problems. It then shows how the technique
using primal and dual solutions leads to the design of stronger approximation algorithms
than does general covering for a surprisingly vast collection of problems.

Chapter 5 is concerned with problems that involve partitioning of graphs such as
separation or cut problems. The techniques here, again, are dominated by the use of
linear programming relaxations and their duals. Several randomized algorithms are re-
viewed as well. The chapter addresses problems that make use of separation, or divide-
and-conquer algorithms for problems such as the multicommodity and the linear
arrangement.

Chapters 6 is devoted to connectivity problems. While these problems can be
thought of as network design problems, the focus here is on graph algorithmic tech-
niques. Chapter 7 uses graph algorithms to solve problems of network design character-
ized by the objective of minimizing the maximum degree node in the required structure
(a recurring scenario in limited capacity setups). One of the most dramatic successes
of approximation algorithms is described in this chapter—the derivation of a solution
which is within one unit of the optimum for the problem of finding a spanning tree for
which the maximum vertex degree is minimized. This problem was previously the tar-
get of a variety of heavy duty machinery, none of which approached the quality of the
solution and the efficiency of the approximation described in this chapter.

Chapter 8 is devoted to the algorithms and techniques that are most successful when
the problems are given in the plane or in a Euclidean space. These problems include
the Traveling Salesman problem (TSP), the Steiner tree problem, triangulations, and a
variety of clustering problems. Approximation algorithms for these types of problems
use different techniques, compared to those used for non-Euclidean problems, that rely
on the field of computational geometry. The TSP is not covered comprehensively in this
book, as it has been extensively covered in the literature to date. The bottleneck version
of TSP is analyzed in the next chapter.

Chapter 9 addresses problems that are not otherwise covered in the book, with em-
phasis on the “quality” of the approximation bound and on how much it can be improved.
It includes samples of constant approximation algorithms: PASs, FPASs; approximation
algorithms that are provably best (unless NP = P); some lower bound results; illus-
trations of the differences between absolute and asymptotic worst case ratios and ap-
proximation algorithms that are within one unit of the optimum. The chapter discusses
problems with a wide scope of applications including location, clustering network com-
munication, covering and packing with certain objects, scheduling, and more.

The recent lower bound techniques based on probabilistically checkable proofs are
reviewed in Chapter 10. This chapter is concerned with the limits on approximability of
problems rather than with the design of approximation algorithms.

In Chapter 11 there are randomized algorithms analyzed in conjunction with linear
programming and semidefinite programming. (It is interesting that these two continu-
ous techniques work so well together with the technique of randomization that has been
proven successful for algorithm design in general.) The randomization makes use of the
fractional values and interprets them as probabilities for rounding up the given variable.
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As was the case for the use of linear programming in approximations, the discovery
that semidefinite programming is useful for approximations came shortly after it was
established that semidefinite programming is a polynomial problem. The chapter also
describes the important topic of derandomization—the conversion of a randomized al-
gorithm to a deterministic one.

Chapter 12 is about Markov chain techniques that have proven useful for providing
an approximate answer to various counting problems. The idea is to use sampling in
an efficient way in order to estimate the magnitude of the answer from a polynomially
restricted search.

Chapter 13 describes extensively online (on-line) algorithms and their major appli-
cations. It reviews the various design techniques and recent results on fower and upper
bounds for the paging, k-server, metrical task system, and other online problems.
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