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Rheology and non-Newtonian flow



To Karl Weissenberg 1893-1976



Preface

This work is intended as a text for engineers. It is pedagogical in nature and
designed to provide examples of the theory and fundamental problems of
non-Newtonian fluid mechanics rather than a review of the published literature, a
research monograph, or a text of engineering processes.

I'have watched with interest the gradual infiltration of non-Newtonian
fluid dynamic studies into university engineering degree courses, and also the
growth of the use of the tensor calculus in engineering science, both over the last
fifteen years or so. It would seem that the time is ripe now for a text woven from
these two threads.

There are several books available at present on the theme of the
industrial aspects of non-Newtonian flow and also several more on the rheological
properties of matter. (The reader may like to consult Rheology, Volumes I-V,
edited by Eirich and published by the Academic Press for the latter.) The total
number of books available on rheology and non-Newtonian flow is still relatively
small, and the present work complements those already available and does not
overlap them to any extent.

Earlier this century, the diverging subjects of theoretical hydro-
dynamics and hydraulics achieved some unification under the stimulus of the
boundary layer concept due to Prandtl (1904). This provided a common meeting
ground for those with either theoretical or practical engineering inclinations and
thus established one of the several areas of growth of engineering science. Little
has been known or understood about the so-called non-Newtonian fluids until
much more recently; these fluids were termed anomalous and the few early studies
were well outside the mainstream of fluid dynamics experiments. The remarkable
accord established between theoretical and experimental research was achieved
only with rheologically simple fluids such as air or water.

The theoretical investigations of non-Newtonian fluid dynamics are
now on a sufficiently sound basis and also of an extent where it may be considered
that it can take its place as an established subject and be as academically sound as
the more classical studies in fluid dynamics. However, it cannot be said that the
experimental side is quite so firmly based. Thus the same accord has yet to be
reached in non-Newtonian fluid dynamics between theory and experiment as
exists in the classical theory. It is pertinent to mention that the experimental
problems are extensive and often present difficulties not present with Newtonian
fluids. Reference may be made to the celebrated difficulty in determining extra-
normal stresses, and also the viscosity—strain rate relations in general fluid
motions. There are other unresolved problems in addition to these two; for
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example, the nature of the influence of flow on the relaxation spectra of various
fluids and also the nature of strain and time-dependent fluids.

In essence, the work described in this book rests on the modelling of
some prototype fluids which exhibit some, if not all, characteristics observed in
real non-Newtonian fluids. It was said of classical theoretical hydrodynamics and
practical hydraulics, perhaps somewhat facetiously, that the former comprised
theoretical predictions which could not be observed, whereas the latter comprised
observations which could not be predicted. However, a degree of unification has
been achieved, as mentioned previously. The theoretical predictions provided
archetypal solutions to broad categories of problems, while the practical observa-
tions provided the authority to reduce the complexity of theoretical treatments by
orders-of-magnitude arguments. This pattern may also be confidently expected to
be fruitful in the field of non-Newtonian flow.

In the spirit of the above argument, the first three chapters of this book
refer to experimental techniques and direct attention to some means of gaining
physical experience of non-Newtonian properties. Later chapters give examples
of different types of solutions to a range of fundamental flow problems. It is not
intended to imply that the methods of solution described are the only ones
available for these particular problems; they are only illustrations of methods.

The physical phenomena in the later chapters are often closely linked —
for example, the subject of stability in Chapter 10 is related to Chapter 7 on shear
wave propagation; also the results of Chapter 7 should be related to those of
Chapter 6 on transient flow via an integral transform procedure and its inverse.
Stability of flow is of course also fundamental to all the flow fields treated here.
Again Chapter 11 on swirling flow about bodies of revolution is related to Chapter
9 on boundary layers.

Sufficient references have been included for the interested reader to
make an entry into the published literature in this field of study. These references
are not intended to be exhaustive; the British Society of Rheology publishes a
quarterly literature review in Rheology Abstracts (Pergamon Press Ltd, Oxford,
UK), this provides a comprehensive survey of the world literature pertaining to
the subject matter of this book.

At this stage in the development of non-Newtonian fluid dynamics, it
was felt more appropriate to concentrate on the physics of flow rather than
numerical methods. For the same reason, no reference has been made to
variational methods, which do not clarify the physics of the problems in hand, but
rather, enable rapid solutions to be obtained to them which do not depend to any
extent on the pattern of the flow field.
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Introduction

An historical note on rheology

In the study of physical events it is necessary to define different physical quantities
which may be assigned unambiguous numerical values and which may be related
to each other. Rheology may be defined as the study of relationships between
“stress” and corresponding “strain” in a non-rigid substance.

Hooke’s law (1676) is probably the first recognisable rheological law
known and it states in effect that deformation is proportional to the applied force.
Boyle’s law (1662) is of a different character since it relates pressure to total
volume (of a gas) and is therefore a thermodynamic equation of state. Newton
(1686) considered the behaviour of an imaginary fluid taken to fill all space, in
which the resistance to motion was proportional to the rate of shear (Newton’s
viscous law). Deviations from this latter simple state of affairs has provided the
terminology ‘“non-Newtonian”; this is the essence of this book.

It was not until about two hundred years later than the advent of the
above laws that the first signs of any complication appeared when James Clerk
Maxwell (1867) suggested that all substances, including gases, should possess both
viscosity and elasticity in shear, and he proceeded to calculate the rigidity modulus
of dry air.

On the experimental side Poiseuille (1847), although primarily con-
cerned with the flow of blood (which we now know is non-Newtonian), through
capillary tubes, successfully derived from his experiments the relationship
between pressure and volumetric flow rate for a Newtonian fluid. Barus (1893)
also used a capillary tube, through which he extruded marine glue, and published a
paper which was apparently overlooked until more recent years. The important
observation in this work was that the glue exhibited a time-delayed partial recovery
of deformation. As far as is known, this is the first recorded direct observation of
non-Newtonian behaviour and is especially important as shear elasticity has now
become a major factor in the treatment of non-Newtonian flow.

In the late 1920s and 1930s it became realised that there exists large
variations in type of non-Newtonian behaviour. This realisation brought into
being the science of Rheology, its birth being largely associated with the names of
E. C. Bingham, W. Weissenberg, M. Reiner, G. W. Scott-Blair and others.

Later came the knowledge that interfaces show similar two-
dimensional properties to those found in three dimensions in shear, also that both
elastic and viscous volumetric effects may be found. The present work is only
concerned with shear effects and the fluids throughout are considered to closely
approximate the ideal incompressible case.
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Tensor notation

The tensor notation for summation followed here is the usual convention of
ignoring the summation sign so that:

=N g 5
Y oax'=ax’ (i=1,2,...N)

i=1

in general co-ordinates, or

i=N
Y axi=ax; (i=1,2,...N)

i=1
in cartesian co-ordinates.

Also considering a co-ordinate system x‘=(x', x2, x>) then a new
co-ordinate system x* = (x', £, x*) may be defined by a co-ordinate transforma-
tion,

_fi =¢i(xl’ x2’x3)

Differentiation of this yields,

. r=N 8¢i
dx' = dx”
rgl ax'
or with the summation convention,
. 9’
dx’ = ¢, dx”
0x
ie.
,ox’
di'=—dx’
0x

A guide to tensor calculus is given in Appendix A IV and there are
several good texts available on the subject.

Terminology

The current English usage in rheology has become formalised to a certain extent
in a recently issued British Standard, namely, BS5168: 1975. The terminology
defined in this standard coincides with that adopted in this book with few
exceptions.

The term “viscoelastic” is widely used in the engineering literature in
connection with elastic liquids and although this deviates from the more correct
terminology of the above British Standard, where elastoviscous (or less euphoni-
cally, elasticoviscous) is recommended; it is sanctioned by common current usage
and is therefore adopted in this text.

“Viscoelastic” is a term more exactly applicable to a solid-like sub-
stance, but no problems arise in practice by using one term for all materials
exhibiting both viscosity and elasticity, since the term is normally used as an
adjective.

The term “thixotropy” is used in this text in denoting any change in
viscosity, from whatever cause, which is apparent in an intrinsic (convected,
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rotating and deforming with the fluid) co-ordinates system as defined in Chapter
4. The recovery on cessation of shearing motion being full, partial (the more
usually observed case) or zero. This rather wide definition is pending further
clarification of the nature of thixotropy. The definition given in the British
Standard is cast in a looser and less exact form than this.

A further term which requires amplification as a possible source of
confusion is that of “viscosity”’. This term is used here to simply denote the shear
stress divided by the corresponding shear rate (more exactly, the extra stress tensor
divided by twice the corresponding strain rate tensor) irrespective of whether the
flow is Newtonian or non-Newtonian. This also applies to elongational flow and is
therefore consistent. The prefix ‘“apparent” is not used.

Solids and liquids

In the study of the rheological properties of matter there appears to be no sharp
distinction between substances that may be classified as solids or liquids, instead
one is faced with an apparently gradual gradation of behaviour between the
extremes of a hard brittle solid to that of a mobile liquid, ranging through
substances termed ‘‘semi-solids”.

However, this text is concerned with fluids and solid-like behaviour is
to be excluded from consideration. A search must therefore be made for a suitable
criterion for the substances falling under consideration; it is this: If the substance
exhibits no reference configuration of permanent significance within the time-
scale of observation, then the substance is classed as a fluid and may properly
come within the scope of this text.

Shear rate, strain rate and deformation rate

These three terms are sometimes not distinguished between, but in this text the
following convention will be adopted: Shear rate will be defined as the simple
velocity gradient following the practice in many engineering text books. This is
actually twice the gross deformation rate because it contains a rigid body rotation.

In many works the overall deformation rate is called the strain rate,
and this text follows this convention. However, if the substance contains a
deforming network and therefore a statistically quantifiable strain, the overall
deformation rate may not be the same as the time rate of change of the
deformation of the network, or elastic strain.

No reference is made to the deformation or strain of any internal
network of the substance, hence no confusion can arise from the use of the term
““strain rate” here.

Rheometry and rheogoniometry

In principle, the isothermal and isobaric flow properties of stable Newtonian fluids
may be adequately characterised by one pair of experimental observations. This
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has led to widespread adoption of simple commercial viscometers and easy
interpretation of results (unless great refinement is required, in which case there
are considerable problems even with Newtonian fluids). For a Newtonian fluid the
appropriate flow property is the viscosity, i.e. the ratio between shear stress and
the corresponding shear rate. This may be obtained for example from a single
measurement of volume flux (Q) and pressure gradient (Ap/L) in the ubiquitous
capillary viscometer using the well-known Poiseuille formula; the viscosity is,

_mApa’
k=78oL

In contrast, the characterisation of a non-Newtonian fluid requires
many observations, possibly of several different types, and hence the problem is
vastly more complicated than for a Newtonian fluid. The corresponding experi-
mental facilities are therefore generally more complex and costly. The instru-
ments are often of individual design, although there are several commercial
designs based upon both the Poiseuille and Couette type of flow patterns (see
Chapter 2). Such instruments are called Rheometers, or Rheogonimeters, since
sometimes the stresses in more than one direction in space are required to be
found.

Non-Newtonian fluid statics

It is quite common in standard fluid mechanics texts to start with a consideration
of hydrostatics. In the case of fluids with no yield stress, solutions in hydrostatics
will also apply to non-Newtonian fluids provided the fluid has had sufficient time
for its internal structure to relax to a terminal condition.

The statics of other cases has not been treated up to the present time.
Slip-line field theory may be of value in the cases where there is a finite yield stress,
but applications have not yet been made and no publications exist in rheological or
fluid mechanics journals which could be embodied into a non-Newtonian fluid
mechanics text.
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Notation

1 Symbols: general comments

x, y, z generally refers to an orthogonal cartesian co-ordinate
system.

r, 6, z generally refers to a cylindrical co-ordinate system.

r, a, ¢ generally refers to a spherical co-ordinate system.

y', y2, y> also refers to an orthogonal cartesian co-ordinate
system.

x!, x2, x> refers to a general curvilinear co-ordinate system.

Unbracketed lower case subscripts or superscripts denote tensor
components. Bracketed and upper case subscripts imply non-
tensor components.

The symbol A or d denotes ‘“‘a small increment of . ...
x denotes the vector cross-product.
V denotes the Laplacian operator
.9 .0 d . . .
=j—+j—+k— in cartesian co-ordmates) :
ox "y 0z

Dimensionless groups are signified by N with a qualifying upper
case subscript. For example N denotes Reynold’s number. The
Reynolds number is, in most cases, further qualified by an
additional subscript.

Four different types of time derivative are used in this text:

6% denotes the time derivative at a fixed point within the flow
fluid.

% denotes the Eulerian time derivative tracking the path of a
fluid particle.

% denotes the Jaumann time derivative tracking the path and
rotation of a fluid particle. (Equation (4.81) refers.)

@ denotes the intrinsic time derivative tracking the path, rotation

and deformation of a fluid particle. (Equations (4.50) and (4.51)
refer.)



xxii  Notation

The following is a list of notation used in this text. In addition some

symbols are defined locally within the text.

Cn

SESECTSNe

Fg
Fp
Fl

2 Definition of notation

2.1 Latin lower case symbols

tube (or sphere) radius.

; acceleration vector.

initial concentration of disperse phase.

concentration of disperse phase at current time (¢).
=2-718....

covariant and contravariant strain rate tensor respectively.
covariant and contravariant metric tensor respectively.
Laplace transformed distribution function, defined by equation
(6.60).

height of the channel.

constants in the power-series equation (7.48).

light path length.

mass.

power-law flow index.

principal values of the refractive index.

covariant and contravariant total stress tensor respectively.
covariant and contravariant extra stress tensor respectively.
Laplace transform variable.

complex axial displacement in tube flow.

real and imaginary parts respectively of s*.

current time.

non-current time.

covariant and contravariant velocity tensor respectively.
mean velocity.

effective slip velocity.

velocity components.

2.2 Latin upper case symbols

instrument constant, Table 2.1: also a constant.
instrument constant, Table 2.1: also a constant.
couple acting on a disc or a sphere: also a constant.
Nth coefficient.

friction coefficient, defined by equation (9.168).
drag coeflicient.

tube diameter.

rotational diffusion coefficient.

total thrust on a cone (or plate).

buoyancy force.

drag force on a sphere.

contravariant body force vector.



o()
P(t)

R(r)
R(I)
R(n)

S(x)
T()
X(x)
Y(y)

Yn(x)

Notation

rigidity modulus.

Heaviside’s step-function.

nth moment of the time-dependent moment of the thixotropic
relaxation distribution spectrum, defined by equation (4.149).
Bessel’s function of the first kind, order N.

power-law coefficient.

constant.

characteristic length.

defined by equation (4.85).

dimensionless viscoelastic relaxation spectrum, defined by
equation (6.25).

rheo-optic memory function, defined by equation (3.56).
viscoelastic memory function, defined by equation (6.22).
thixotropic memory function, defined by equation (1.21).
Avogadro’s number.

viscoelastic relaxation spectrum.

local Reynold’s number on a rotating disc, defined by equation
(11.7).

couple coefficient, defined by equation (11.12).

Reynold’s number defined by equation (11.13).

dimensionless flow number defined by equation (11.19).

real and imaginary parts respectively of the complex Reynold’s
number.

the ratio Nx/NEg.

length Reynold’s number.

Reynolds number relating to a power-law fluid, defined by
equation (9.178).

turbulent length Reynold’s number defined by equation (9.189).

length Reynold’s number defined by equation (9.132).
dimensionless number (=v(Av/a’); also defined by equation
(9.136).

order of magnitude of . . ..

the negative of the pressure gradient (function of time).
volumetric flow rate.

cone radius; also the gas constant.

radial space function.

thixotropic relaxation spectrum.

nth moment of the thixotropic relaxation spectrum.

defined by equation (4.86).

dimensionless space function, defined by equation (6.34).
dimensionless time function, defined by equation (6.48).
mainstream velocity; also characteristic velocity.

spacial distribution function of the stream function (i) in the
x-direction.

spacial distribution function of the stream function (¢) in the
y-direction.

Bessel’s function of the second kind, order N.

xxiii
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2.3 Greek lower case symbols

Maxwell birefringence constant; also a constant; also a wave
number, defined by equation (7.27); also dimensionless
momentum thickness, defined by equation (9.25).

dimensionless complex displacement.

real and imaginary parts respectively of a ™.

dimensionless displacement thickness, defined by equation (9.28).
dimensionless energy thickness, defined by equation (9.210).

. typical covariant tensor of rank two in an intrinsic co-ordinate

system.

relaxation time of the rate process of the Nth.

flow unit in the Eyring viscosity equation (1.11).
contravariant birebringence tensor.
extra-birefringence tensor, defined by equation (3.55).
shear rate.

maximum principal strain rate.

shear rate amplitude in oscillatory motion.

integral defined by equation (9.211).

. covariant metric tensor of the intrinsic (') co-ordinate system.

Kronecker delta; §; =1 (i =j), 8; =0 (i #j).

phase difference of emerging rays: also boundary layer thickness.
perturbation parameter.

the convected co-ordinate system.

dimensionless length co-ordinates: defined by equation (7.12).
Lamé elastic coefficient.

material constants.

angle between stream line and the maximum principle stress
direction: also dimensionless velocity deficit (= 1—¢).
viscoelastic relaxation time: also wave length of light.

time constant.

shear rate time constant.

time constants.

steady shear viscosity.

complex viscosity.

real and imaginary parts respectively of the complex viscosity.
plastic viscosity.

high shear rate viscosity.

initial viscosity.

intrinsic viscosity.

Lamé viscosity.

elongational viscosity.

kinematic viscosity.

material constants.

dimensionless time; defined by equations (6.24).
= 3:14159.

; total covariant stress tensor in the ¢ co-ordinate system.
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Notation

fluid density.

dimensionless co-ordinate.

first, second and third normal stress differences respectively.
material constants: defined by equations (4.118) and (4.119).
shear stress.

shear stress on a solid boundary.

total normal stress in the x, y, z directions respectively.

extra normal stress in the x, y, z directions respectively.
maximum and minimum principal stresses respectively.

yield stress.

spacial angle between principal stress and principal strain rate:

also birefringence orientation angle between n; and stream line:

also dimensionless velocity.
complex velocity.
real and imaginary parts respectively of ¢ ™.

Newtonian solution for the shear wave velocity: equation (7.55).
first perturbation velocity from Newtonian shear wave; equation

(7.55).

stream function: viscoelastic memory function.
dimensionless relaxation time: defined by equations (6.24).
angular date of rotation.

extinction angle; also dimensionless co-ordinate defined by
equation (6.24).

2.4 Greek upper case symbols

constant: also harmonic function satisfying Laplace’s equation.
dilation or volumetric strain; defined by equation (4.28).
angular amplitude of driven platen.

unit orientation vector.

thixotropic relaxation time; also birefringence relaxation time.
summation sign.

angular amplitude of suspended platen.

complex angular amplitude.

real and imaginary parts respectively of ®.

memory function; defined by equation (4.123).

angular rate of rotation of a disc or sphere.

XXV



