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Computational Fluid Dynamics



Foreword

There has been a revolutionary development in the methodology of
design and analysis of engineering systems over the past 15 years, mainly
as a result of the digital computer, which possesses capabilities for calcula-
tion at break-neck speeds, for storing information, and for making decisions
according to pre-programmed criteria. In the field of fluid dynamics, the
computer has been posing a serious challenge to the wind tunnel in pro-
viding an understanding of fluid flow phenomena.

Whether a computer. can render experimental measurements unneces-
sary has been the subject of an interesting controversy. On the one hand,
it is to be remembered that all our descriptions of the physical world, in-
cluding the equations of motion, rest entirely on observation. All a com-
puter can do is to rearrange the information fed into it, and the information
does not acquire extra merit or accuracy by being subjected to a few million
arithmetic operations. The value of the computer is that it can handle more
complicated descriptions of the physical world than can be handled by
analytic methods. While the experimenter has new techniques of conditional
sampling, laser anemometry and measurement of pressure fluctuations
available to him, advances in CFD, in terms of computing power, have
been occurring at such a tremendous pace that a ‘fact gap’ has arisen, with
‘too many computers chasing too few facts’! Bradshaw believes that experi-
ments are the foundation of our understanding and should be the founda-
tion of the prediction methods.

On the other hand, useful research results can be obtained from com-
puter solution of intelligently simplifisd versions of the time-dependent
equations. There are several quantities which are difficult, if not impossible,
to measure directly, and ‘computer experiments’ offer a possible path to
understanding.

Concurrent with the increase in the complexity of computational tech-
niques, the role of the user of the computer codes has undergone a tre-
mendous change. No longer it is possible for every user to program the
computation procedure himself, and he is forced to accept a program pack-
age from the originator. This places alternative responsibilities on the user,
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who will have to bear the consequences of inadequate prediction. The user
must keep in touch with the advances in physical understanding on which
the prediction methods are based, so that he can interpret the results and
more readily recognize errors. He must recognize that even with the best
of codes, the output accuracy is only as good as the input accuracy. Too
often the codes are not balanced, in that they have sophisticated -numerics
and poor models. At the other extreme, an advanced code with all the best
physics in it may not be useful if only one calculation can be performed.
Thus, as in all other aspects of engineering, CFD involves a compromise
between conflicting factors and demands user judgement for optimal
solutions.

In order to familiarize the teachers and students of mechanical, aero-
pautical and chemical engineering with the latest developments in CFD,
Professor TARIT BOSE has written this Monograph. He has been active
in this field for several years and has utilized all his rich, diverse and
direct experience to provide a thorough and lucid presentation. It is hoped
that this Monograph will enable the mechanical engineering community to
increasingly and effectively utilize CFD techniques in their design and ana-
lysis tasks.

DR. B. NATARAJAN
CHAIRMAN, MEEDC



Preface

In recent years, there has been a phenomenal growth in use of com-
puters for research, design and development to the extent, that we can now
dispense with experimental methods in many cases. For aerodynamicists,
therefore, Computational Fluid Dynamics (CFD) has grown important as a
subject, and has come to stay. With the growing popularity of the subject
among the scientists, and with growing demand from the students for a
good course in the subject, a need was felt fora good text-book encompass-
ing the broad field of the CFD. The present book is, therefore, written to
satisfy the need. This book is an outgrowth of lectures given by this author
to the undergraduate and graduate students of Aeronautical and Mecha-
nical Engineering and Mathematics at the Indian Institute of Technology,
Madras, India. At this stage it is presumed, that the student has a fairly
good command of inviscid and viscous flow theories, and he has already
undergone courses in numerical mathematics and computer programming,
Thus after a short introduction a brief review is presented on some of the
important numerical methods, followed by a review of the basic fluiddyna-
mic equations. The latter are rewritten in general orthogonal coordinate
system and in body-fitted coordinate system. In Chapter 2, applications of
the numerical methods are given for some fluid dynamical problems. Subse-
quent chapters deal with some of the most current topics of interest: relax-
ation techniques, time-dependent method, panel method, finite element
method, particle-in-cell method, and fluid-in-cell method. For the particle-
in-cell method, however, there is need for a good on-line graphic terminal.
For both the panel method and the finite element method, one has to deal
with very large number of equations, for which large storage requirements
in the computer core memory may be a problem. In the case of the finite
element method, however, large number of zeros in the coefficient matrix
require special methods to handle sparse matrices, and suggestions are
made for this.

While a very large number of topics is being discussed in this book, the
idea is to expose the reader to a number of topics of current interest. While
selecting the topics, there was, of course, the usual dilemma, whether it
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would not be better to write exhaustive treatise on each of the topics, on
which a large number of publications exists, and their number is growing
at an explosive rate. It was, however, felt, that within the limited scope of
a text book, exposure to various methods will be very much useful, and
the reader can always look into other literatures. It must, however, be
emphasised at the outset, that these are not the only topics available in the
area of Computational Fluid Dynamics, althougb these give probably a very
good cross-section of problems of current interest. At the time of prepara-
tion of the book a number of computer programmes were prepared, but
these were admittedly not optimum in terms of the required computation
time and memory locations. Hence, it was felt too premature to publish the
listings of these subroutines, although, it is suggested that the reader should
try to write computer programmes based on description of methods given
in this book and try to improve on them.

I would now like to acknowledge help from different people. First,
my students had worked out some of the numerical problems in detail and
some of their results are presented in this book. Secondly, I had always
very fruitful discussions with two of my colleagues, S. Santhakumar and S.C.
Rajan, and H.N.V. Dutt of the Hindustan Aeronautics Ltd., Bangalore.
Thirdly, the Curriculum Development Centre in Mechanical Engineering
Department of IIT Madras has helped in typing and preparation of the
original manuscript. Fourthly, I owe graritude to large number of authors
for providing reprints, as referred to. Fifthly, I owe my gratitude to the
publisher for careful editing, printing and publishing, and accommodating
all my wishes. Finally my wife, Preetishree, and children, Mohua, Mayukh
and Manjul, had to put up with me during the writing of the book.

T.K. Bose
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. Introduction

The subject Computational Fluid Dynamics needs both a high-speed
computer and efficient computational methods. It will, therefore, not be out
of place to review and discuss first the development that took place to
bring the subject to the current status. This is said to be composed mainly
of ‘three elements: aerodynamic (fluid-dynamic) theory, applied mathema-
tics, and computers’ (Graves, Jr., 1982). '

According to Graves, Jr. (1982), ‘Newton gave us the first real insight
and mathematical formulation of the basic laws of fluid motion’, for exam-
ple, concepts leading to modern hypersonic theory and speed of sound, and
the concept of viscous shear stress proportional to the velocity gradient in
the transverse direction. ‘Mathematical modeling of ideal fluids progressed
expansively after Newton under the intellects of such notables as D’Alem-
bert, Euler, Lagrange, and Helmholtz’. The 20th century saw the invention
of an aircraft forcing a rapid expansion of the theory of inviscid and vis-
cous flows by such giants as Prandtl, Joukowski, Kutta, Blasius and Von
Karman. While, under the boundary layer type flow, only the integral
method of Karman-Pohlhausen was in existence during 1940s, in 1950s and
1960s differential methods to compute laminar boundary layers with large
pressure gradient and variable thermophysical and transport properties
across the boundary layer were developed. In the 1970s came differential
methods to compute two-dimensional and axi-symmetric shear layers (Cebeci
and Smith, 1975), which were extended to large free-stream to wall stagna-
tion exthalpy ratios (Bose, 1979) and real gases in a rocket nozzle (Bose,
1978). Some of the models used then to calculate turbulent shear layers
were ‘zero-equation’ but others used one-equation and two-equation models
also. The ‘zero-equation’ model requires a minimum of three equations-
continuity, momentum and energy equations—but no differential equation
for turbulent terms, for which semi-empirical relations are provided. While,
in the ‘one-equation’ model an additional equation is used for computa-
tion of some turbulence properties, the turbulence terms are calculated in
the ‘two-equation’ model from two additional equations, namely, the tur-
bulence kineticenergy and dissipation function equations, provided value
of some constants are determined from a known shear layer (Jones and
Launder, 19723 Rodi, 1970 and 1982).
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For inviscid flows, the first real milestone inthe development of modern
numerical analysis was the 1928 paper by Courant, Friedrich and Levy,
that presented the famous CFL criterion discussed extensively in this book.
Later in 1940s, Von Neumann and Richtmeyer collaborated in the develop-
ment of the artificial viscous method, leading to capturing of shock waves.

There has been an extraordinary development for computation of flow
around bodies and channels during the last fifteen years. For introduction
to some of the methods developed and being discussed in this book refer-
ence may be made to the books of Kuethe and Chow (1976), Chow (1979),
Roe (1982), Wirz and Smolderen (1978), and Anderson, Tannehill and
Pletcher (1984). However, development of relaxation techniques for steady,
transonic flow started actually with the work of Murman and Cole (1971),
when they prescribed separate schemes for subsonic and supersonic regions
of flow. The method had however, certain deficiencies in maintaining con-
servation of mass, momentum and energy flux in the shock region, and
also the shock region extended to about three or four mesh intervals.
Therefore, fully conservative equations with ‘shock-point operator’ were
developed to ‘capture’ the shock, and subsequently the ‘shock-fitting tech-
nique’ was introduced (Yu, Seebass and Ballhaus, 1978; Hafez and Cheng,
1975; Martin, 1983) to take care of the physically abnormally large shock
region. Earlier work of Murman and Cole was further extended by Krupp
and Murman (1972), Bailey and Steger (1973), Newman and Klunker (1972),
Murman (1974), Bailey and Ballhaus (1975) and others to calculate tran-
sonic flows for slender lifting bodies and wings, although the method so
far applied is confined basically to supersonic flows in regions near the
airfoil, where the coordinate system is closely aligned. In cases, where the
flow at infinity is supersonic, the misalignment of coordinates leads to
problems, and rotated difference scheme based on the method of charac-
teristics was evolved by Jameson.

In transonic flows, the flow is strongly influenced by the occurrence of
shock induced separation. According to Finke (1976), ‘the flow mechanism
can be explained as follows: When the boundary layer on the rear part of
the wing separates, it acts as a flat plate and unsteady pressure distributions
are produced in the outer subsonic flow which propagates downstream and
upstream. The upstream propagating disturbances meet the shock and
force it to move upstream; thereby the region of separation is increased.
Near the point of maximum thickness the shock wave degenerates to a
Mach wave. The flow becomes subsonic, and shortly thereafter it is acceler-
ated until near the trailing edge the shock wave occurs’. This repeats again,
and this unsteady phenomenon called ‘buffeting’ is part of the unsteady
transonic flow.

Investigations of the unsteady flow by the time dependent method have
opened a broad new field for study of steady and unsteady flow problems.
For steady flows, introduction of the method has made it possible to avoid
the problem of matching the elliptic, parabolic and hyperbolic equations at
interfaces between subsonic-sonic and sonic-supersonic regions, since the
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time-dependent equations are always hyperbolic in nature with time. It was,
therefore, possible to study not only external flows around bodies, but also
internal flows in convergent-divergent nozzles and internal combustion
engines. For steady, transonic external flows, the shock is ‘captured’ in a
natural way, although the number of time steps required, owing to the
restriction in time step size for stability reasons can be quite large by this
method, which further increases for unsteady phenomena, including periodic
phenomena. The time step, can, however, be increased by factorization
(Ballhaus et. al., 1975 and 1978; Catherall, 1982) and computation in
multiple grids.

For steady external flows, both the methods, namely, the transonic
relaxation method and the time-dependent method have been used success-
fully for two and three-dimensional slender bodies. For arbitrary bodies
(both the slender and non-slender bodies), however, there are obvious
difficulties in satisfying boundary conditions on the surface of the body
and the Kutta condition at the trailing edge, which could be removed by
such approximate methods like the ‘panel method’ and the ‘finite element
method’, or by solving the differential equations in body-fitted coordinates.
In the panel method linearised flow equations are used for ‘pure’ subsonic
or supersonic flows for ‘thickness’, ‘camber’ and ‘angle of attack’ problems
around a complete aircraft including stores and in the neighbourhood of
another body. However, the requirement in the panel method to handle
very large number of simultaneous equations makes the method somewhat
limited since it is very expensive with respect to both time and computer
memory requirements. On the other hand, the finite element method requires
inversion of very sparse matrices, which are symmetric, and for which
special provisions can be made fairly easily. However, the stringent conti-
nuity requirement at element boundaries leads to complexities in the use
of this method for fluid mechanical problems, and thus, the use of the
method for such problems is somewhat limited.

For a completely different class of two-dimensional problems, the
particle-in-cell and fluid-in-cell methods are ideal and allow real time
observation of simulated flows, provided an on-line plotter is available.

Although the CFD, as Computational Fluid dynamics is popularly called
in short form, started developing in the late 1960s and early 1970s, it was
made possible technically by development of computing machines. In 1642,
Blaise Pascal invented an adding machine, which operated by counting of
integers. In 1671, Gottfried Wilhelm Leibnitz invented a machine for
multiplication by repeated adding with the help of a ‘stepped wheel’. It is,
however, noted (Graves, jr., 1982), that Charles Babbage designed his
‘apalytical machine’ around 1820. Babbage is said to have designed a
machine that had all the characteristics of a modern computer, including
input-output functions, branching and looping of instructions, etc., although
Babbage’s analytical machine was too advanced for the technology of his
time. During the last quarter of the 19th century, however, desk calculators
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were developed, which were compact, and could perform the four basic
arithmetic functions, and which were replaced by electromechanical calcu-
lators later.

Electric computers, which were used first in the 1940s in a few research
laboratories, have developed fast. In the 1950s, the computers had still
vacuum tubes as basic components, and there were only a few special
registers, where computations could be made. At this time, the main stor-
age was magnetic drum, and a basic floating point arithmetic took about
one-hundredth of a second. The milestone event in electronics, however,
occurred in 1948 with the invention of transistors, which replaced vacuum
tubes in late 1950s. The computation speed increased to microsecond range,
the internal memory was ferrite-core memory, and the magnetic discs,
drums and tapes became peripherals. With the development of integrated
circuits, a further increase in computation speed and storage space were
possible. In the 1980s, the computational speed is being increased further
to the order of ten nano-seconds (Kutler, 1983) by having many processors
working parallel, while it is expected that by 1990 computers with storage
capacities of several hundred billion words and operational speeds of a
trillion floating point operations per second may be available. There are
also proposals for giant computers with conventional technology—one such
proposed giant is NASA’s ‘National Aerodynamic Simulator’ (NAS) with
an operational speed of a billion operations per second and a high speed
memory of 240 million words (Graves Jr., 1982). These extraordinary
increases in the storage capacity and speed of computation has resulted in
reduction of the relative computation cost by an order of magnitude in
every eight years (Chapman, 1979).

While integrated circuits already place upwards of 260,000 transistors
on a single chip, the silicon-based integrated circuit technology is likely to
be replaced in near future by gallium-arsenide (GaAs) technology resulting
in an order of magnitude increase in the speed. Even as attractive as GaAs
technology appears, a new and different form of integrated circuit techno-
logy in the form of the superconducting Josephson-junction may increase
the computation speed by another two orders of magnitude (Graves, Jr.,
1982). In fact, it is reported that by exploiting both GaAs and Josephson-
junction technology, Japan is expected to build a computer by 1990 cap-
able of sustained speeds of several hundred billion operations per second.

Thus, according to Chapman (1979), there are several compelling rea-
sons to vigourously develop computational fluid dynamics. Firstly, because
of decrease in relative computation cost and better algorithms, there has
been an extra-ordinary cost reduction, whereas the cost of experiments is
increasing steadily. While at the beginning of the century only about 20
hours of experiment in wind tunnels was adequate, presently a new aircraft
needs ten thousand to one-hundred thousand hours of windtunnel time.
Thus windtunnel experimentation has become increasingly both expensive
and time consuming. Secondly, even after very long hours of experimen-
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tation, the results are often doubtful, and for such cases, a computer pro-
vides with a powerful, independent research tool to gain new technological
capabilities. For example in transonic speed range, the pressure distribu-
tion and the flow separation on a body are very much dependent on Rey-
nolds number, and there is a large gap between the actual Reynolds number
in flight and the Reynolds number capability of windtunnels. Similarly, the
windtunnels have rarely been able to simulate Reynolds number of atmos-
pheric flight, aerodynamics of probes entering planetary atmospheres, flow
and temperature field around atmospheric entry vehicles, propulsion-
external flow interaction in flight, flow fields between rotating blades, etc.

Thus, the subject Computational Fluid Dynamics has come to stay as
one of the most important subjects.

1.1 Basic Fluid Dynamic Equations

Basic fluid dynamic equations, being introduced now, are the equations
of continuity, momentum and energy. These equations and their deriva-
tion are given in all text books of fluid dynamics, and hence, only the
summary of results are presented. The equations are written in Cartesian
coordinate system, and the underlying assumptions are: (1) the gas is a
single component gas, (2) there is no volume force acting on it,and (3)the
gas is not radiating. Thus the basic equations are as follows:

(a) Equation of continuity

If V=1V {u, v, w} is the velocity vector with velocity components u, v,
w in the Cartesian coordinate system {x, y, z} and in time ¢, the equation
of continuity is written as follows:

pe T+ () + (p¥)y + (eW)s = 0 (L.1)

In Eq. (1.1), p is the density, and the subscripts ¢, x, y and z denote partial
derivatives with respect to these independent variables. It is obvious, that
for the incompressible case (p = constant, p, = 0), Eq. (1.1) becomes

Uy + vy + wy= 0 (1.1a)

(b) Egquation of momentum
Equation for x-component of momentum is

(eu): + (pu)y + (puv)y + (puw): = dive (1.2)
where
8 = (—p — 2[3udiv V) 8™ + u(V: + V3) (1.2a)
In Eq. (1.2a) subscripts refer to partial derivatives and superscripts refer
to components in s and r directions. Further, p is the pressure, p is the
(dynamic) viscosity coefficient and 8™ is the Kroneker delta with the follow-
ing values; r = s: 3™ = 1, r % s: 8™ = (. Thus in Cartesian coordinate
system Eq. (1.2) becomes
(ew + (pu")x + (eu)y + (Puw)s = — Px + Ausiz)x + [w(y + 7))y
+ [w(u: + wo)l: — (2/ 3)[!"(“: + vy + Wil (1-3)
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There are, of course, similar momentum equations for y- and z-compo-
nents. For incompressible flow, the right hand side of Eq. (1.3) becomes

—Px + p(xx + Uyy + Uszs) (1.42)
and further, the left hand side of Eq. (1.3) can be simplified with the help
of Eq. (1.1) to become

elwe + uuy + vuy, + wu,) (1.4b)

(¢) Egquation of kinetic energy
Multiplying the momentum equation with the respective velocity compo-
nent, and adding over all components, we get

q'\%"q)x + (v)y + (Wg): = u div +** 4 v div ©* + wdiv e (1.5)

where ¢ 51”/2.

(d) Eguation of energy
Equation of energy is written in terms of the total internal energy
e® = e 4 V?/2, where e is the internal energy, and is as follows:

(e + (peou)x + (pe®)y + (p'W)s = (kTx)x + (kKTy)y + (KT)s
+ div (ut*) + div (v1*) + div (wr%s) (1.6)

In the above equation k& is the heat conductivity coefficient and T is the
temperature.
Subtracting Eq. (1.5) from Eq. (1.6), we get

(pe): + (pue)x + (pve)y + (pwe)s = (kTx)x + (kTy)y + (kTs):—p divV + ¢
1.7
in which the dissipation function ¢ is given by the relation
= — (2/3) w(ux + vy + wa)* + 2p@u + vy + wd) + el + u,)?
F w0 (L7a)
Noting the relationship between the static enthalpy, 4, the total enthalpy,
h°, and the respective internal energies

h = e+ ple; h° = € + plp
We can write
(ee) + (pue); + (pve)y + (ewe)s = (oh): + (puh)x + (pvh)y + (ewh):

- (up)x - (VP).V - (Wp),
and

(e®); -+ (pue®)x + (pve®)y + (pwe): = (Ph°); + (puh®)x + (PVA°)y + (pWh®),
— (up)x — (vp)y — (WP):
Further, defining a ‘substantial derivative’
D( )/Dt=( )t+u( )x"l‘v( )y+W( ):

Equations (1.6) and (1.7), in terms of static and total enthalpy, 4 and A°,
respectively, become



