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PREFACE. | ]

This work gathers together, without substantial modification, the major-
ity of the historical Notes which have appeared to date in my Eléments de
Mathématique. Only the flow has been made independent of the Eléments to
which these Notes were attached; they are therefore, in principle, accessible
to every reader who possesses a sound classical mathematical background, of
undergraduate standard.

Of course, the separate studies which make up this volume could not in
any way pretend to sketch, even in a summary manner, a complete and con-
nected history of the development of Mathematics up to our day. Entire parts
of classical mathematics such as differential Geometry, algebraic Geometry,
the Calculus of variations, are only mentioned in passing; others, such as the
theory of analytic functions, that of differential equations or partial differ-
ential equations, are hardly touched on; all the more do these gaps become
more numerous and more important as the modern era is reached. It goes
without saying that this is not a case of intentional omission; it is simply
due to the fact that the corresponding chapters of the Eléments have not yet
been published.

Finally the reader will find in these Notes practically no bibliographic or
anecdotal information about the mathematicians in question; what has been
attempted above all, for each theory, is to bring out as clearly as possible
what were the guiding ideas, and how these ideas developed and reacted the
ones on the others.

The numbers in square brackets refer to the Bibliography at the end of
the volume.
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1. FOUNDATIONS OF MATHEMATICS;
LOGIC; SET THEORY.

The study of what is usually called the “foundations of mathematics”, which
has been carried out ceaselessly since the beginning of the 19th century, was
impossible to bring to fruition except with the help of a parallel effort to
systematise Logic, at least those parts that govern the links between mathe-
matical statements. So it is not possible to separate the history of set theory
and the formalisation of mathematics from that of “Mathematical Logic”. But
traditional logic, like that of the modern philosophers, covers in principle, an
area of applications far greater than Mathematics. Therefore the reader must
not expect to find in what follows a history of Logic, even in a very sum-
marised form; we have limited ourselves as far as possible to retracing the
evolution of Logic only in so far as it impinged on that of Mathematics. It is
because of this that we will say nothing about the non-classical logics (many-
valued logics, modal logics); all the more so will we be unable to tackle the
history of those controversies which, from the Sophists to the Vienna School,
have never stopped dividing philosophers both as to the possibility and the
manner of applying Logic to objects in the real world or to concepts of human
thought.

That there was a well-developed prehellinic mathematics is not today in
any doubt. Not only are the notions (already very abstract) of whole number
and of the measurement of quantities commonly used in the most ancient
documents which have reached us from Egypt or Chaldea, but Babylonian
algebra, because of the elegance and sureness of its methods, should not be
thought of as a simple collection of problems solved by empirical fumbling.
And, if nothing is found in the texts which resembles a “proof” in the formal
meaning of the word, it is reasonable to believe that the discovery of such
methods of solution, whose generality appears through particular numerical
applications, was not possible without a minimum of logical links (perhaps
not entirely conscious, but rather like those on which a modern algebraist
depends when he undertakes a calculation, before “setting down formally”
all the details) ([232], pp. 203 f.).

The essential originality of the Greeks consisted precisely of a conscious
effort to order mathematical proofs in a sequence such that passing from one
link to the next leaves no room for doubt and constrains universal assent.
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That Greek mathematicians made use, in the course of their research, just like
modern mathematicians, of “heuristic”, rather than convincing, arguments,
is what was proved for example (if there were any need), by the “treatise of
method” of Archimedes [153 c]; note also in this, allusions to results “found,
but not proven” by earlier mathematicians.! But from the first detailed texts
that are known to us (and which date from the middle of the Vth century),
the ideal “canon” of a mathematical text is properly settled. It will find its
highest expression in the great classics, Euclid, Archimedes and Apollonius;
the notion of proof, in these authors, differs in no way from ours.

We have no texts allowing us to follow the first steps of this “deductive
method”, which seems to us already near perfection at the exact moment
when we become aware of its existence. One can only think that it fits fairly
naturally into the perpetual search for “explanations” of the world which
characterises Greek thought and which is so discernible already amongst the
Ionian philosophers of the VIIth century; moreover tradition is unanimous in
ascribing the development and refinement of the method to the Pythagorean
School, in a period which fits between the end of the VIth century and the
middle of the Vth century.

It is on this “deductive” mathematics, fully conscious of its goals and
methods, that the philosophical and mathematical thought of subsequent
times will be concentrated. We will see on the one hand the establishment
little by little of “formal” Logic modelled on mathematics, to conclude with
the creation of formalised languages; on the other hand, mainly starting at
the beginning of the XIXth century, the basic concepts of mathematics will
be queried more and more and a great effort will be made to clarify their
nature, especially after the birth of the Theory of sets.

THE FORMALISATION OF LOGIC.

The general impression which seems to emerge from the (very patchy) texts
that we have on Greek philosophical thought of the Vth century, is that it is
dominated by an increasingly conscious effort to extend to the whole field of
human thought the procedures for conducting discussion put in hand with so
much success by contemporary rhetoric and mathematics - in other words,
to create Logic in its most general form. The tone of philosophical writings

! Notably Democritus, to whom Archimedes attributes the discovery of the formula
giving the volume of a pyramid ([153 c], p. 13). This allusion must be put alongside
a famous fragment attributed to Democritus (but of contested authenticity) where
he states : “No one has ever surpassed me in constructing figures by means of proofs,
not even the Egyptian “harpedonaptes”, as they are called.” ((89], v. I, p. 439 and
v. II, 1, pp. 727-728). The comment by Archimedes and the fact that proofs (in the
classical sense) have never been found in those Egyptian texts which have reached
us, lead us to think that the “proofs” to which Democritus refers were no longer
considered such in the classical period, and would not be so today either.
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undergoes at this time a sudden change: while in the VII‘th and VIth centuries
the philosophers affirm or vaticinate (or at most outlme‘ vague argumc'ents,
based on equally vague analogies), starting with Parmemdfas and especially
Zenon, they argue and try to draw out general principles which can serve as a
basis for their dialectic: it is in Parmenides that one finds the first stat.’.erx'len’t,’.
of the principle of the excluded middle, and the proofs “b}f contradiction
of Zenon of Elea remain famous. But Zenon writes in the middle of tl.le Vth
century; and, whatever the uncertainties of our documentation,? it is very
likely that at this time, mathematicians, in their own sphere, were currently
ing these principles. .

uswxfs we salzd ablc)we, it is not for us to retrace the innumerable difficulties
which abound at every step in the gestation of this Logic, and the contro.ver-
sies which result, from the Eleatics to Plato and Aristotle, via the Sophmts;
let us pick up here only the role played in this evolution b’" th'e assuduo.us
cultivation of oratorical art and the analysis of language which is one of its
corollaries, developments that it is agreed should be a.ttr_ibuted. mainly to
the Sophists of the Vth century. On the other hand, even if the mﬂuenf:e of
mathematics is not always explicitly recognised, it is none the less manifest,
in particular in the writings of Plato and Aristotle. It can be said.that Pla.t.:o
was almost obsessed by mathematics; without being himself an mven?or in
this area, he kept up, after a particular period in his life, With. the' discov-
eries by contemporary mathematicians (many of whom' were yls friends or
his pupils), and never after ceased from a most direct k'lnf‘l of interest, even
going so far as to suggest new directions of research; so it is that constapt.ly,
in his writings, mathematics serves as illustration or model (and sometimes
even, as with the Pythagoreans, feeding his leanings tows«.u.ds mystlcxf_srr}). As
for his pupil Aristotle, he could not have avoided receiving the minimum
of mathematical foundations required of the pupils of the Academy, and a
volume has been produced consisting of extracts of his work that are about
mathematics or refer to it [153 dJ; but he seems never to have n'lad_e a great
effort to keep in touch with the mathematical movements .of his time, fmd
he only quotes in this area results that had been popularised a lon.g time
before. This displacement will besides only become more marked with .the
majority of later philosophers, of whom many, due to the la:ck of technical
preparation, believe themselves in all good faith to be sp.ea.kmg knowledge-
ably about mathematics, whereas they will only be referring to a stage long
since overtaken in its evolution. )

The end product of this period, as far as Logic is concerned, is the mon-
umental work of Aristotle [6], whose great merit is to have sucf:eeded'm
systematising and codifying for the first time procedures of reasoning which

2 The best classical example of proof by contradiction in mathematics is the proof
of the irrationality of v/2, to which Aristotle often refers; but mod?rn t.:xperts have
not been able to date this discovery with any accuracy, some putting it at the be-
ginning and others at the very end of the Vth century (see p. 148 and the references
cited there concerning this topic).
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had remained vague or unformulated in his predecessors.> We must above
all retain here, as our aim, the general thesis of this work, to know that it
is possible to reduce all correct reasoning to the systematic application of a
small number of immutable rules, which are independent of the particular
nature of the objects in question (an independence which is clearly demon-
strated by the representation of the concepts or propositions by means of
letters — probably borrowed by Aristotle from the mathematicians). But
Aristotle concentrates his attention almost exclusively on a'particular type
of relations and logical chains, making up what he calls the “gyllogism”: it
is mainly a case of relations that we would translate nowadays in the form
AC Bor ANB # 0 in the language of the theory of sets,* and with the way
of chaining these relations or their negations, by means of the schema

(ACBand BCC)=(AC ().

Aristotle was still sufficiently informed of the mathematics of his era in order
to have seen that schemas of this type were not sufficient to take account of
all the logical operations used by mathematicians, nor, all the more, of the
other applications of Logic ([6], An. Pr.,I, 46).5 At least the deep study of
the different forms of “syllogisms” which he undertakes (and which is almost
entirely consecrated to the elucidation of the perpetual difficulties raised by
the ambiguity or the obscurity of the objects on which the reasoning bears)
gives him among others the chance to formulate the rules for obtaining the
negation of a proposition ([6], An. Pr., I, 46). It is also to Aristotle that is

3 In spite of the simplicity and the “obviousness” that the rules of logic formulated
by Aristotle appear to lay out for us, it is only necessary to put them back in their
historical setting in order to appreciate the difficulties that presented themselves in
trying to obtain a precise statement of these rules, and the effort that Aristotle must
have put forth in order to succeed: Plato, in his dialogues, where he is addressing a
cultured public, still lets his characters get embroiled with questions as elementary
as the relationships between the negation of A C B and the relation AN B = @ (in
modern notation), however making the correct answer appear later [264].

* The corresponding statements of Aristotle are “All A is B” and “Some A is B”;in
this notation A (the “subject”) and B (the “predicate”) take the place of concepts,
and to say that “All A is a B” means that it is possible to assign the concept B to
each object to which it is possible to assign the concept A (A is the concept “man”
and B the concept “mortal” in the classic example). The interpretation that we
give to it consists in considering the set of objects to which the concepts A and B
respectively can be applied; it is the point of view “of extension” so called, already
known to Aristotle. But he considers mainly the relation “All A is B” from another
point of view, that “of comprehension” where B is seen as one of the concepts that
constitute in some way the more complex concept A, or, as Aristotle says, “belong”
to it. At first sight, the two points of view seem as natural one as the other, but
the point of view “of comprehension” has been a constant source of problems in
the development of Logic (it seems further removed from intuition than the first,
and leadx)i fairly easily to errors, notably in schemes involving negations; cf. [69a),
pp.21-32).

5 For a critical discussion of syllogisms and their deficiencies, see for example ([69a],
PP. 432-441) or ([164], pp. 44-50).

1. FOUNDATIONS OF MATHEMATICS; LOGIC; SET THEORY. 5

due the credit for having distinguished with great precision the role of “uni-
versal” propositions from that of “particular” prop.ositions, the f'irst s.l<<?tch
of quantifiers.® But it is too well known how the mﬂuc?nce of h.1s v‘(rltxngs
(often interpreted in a natrow and unintelligent way), which remain still very
influential until well into the XIXth century, was to encourage philosophers
in their neglect of the study of mathematics, and to block the progress of
formal Logic.” o

However this latter continued to make progress in Antiquity, in ]:he sur-
roundings of the Megaric and Stoic schools, rivals of the Peripatetics. Our
information about these tenets are unfortunately all at second !mnd, often
passed on by adversaries or mediocre commentators. The essential progress
achieved by these logicians consists, it would appear, of the. formation of a
“propositional calculus” in the meaning which it ha.? today: instead of being
restricted, like Aristotle, to propositions of the particular form A C B, they
state rules about completely indeterminate propositions. Further, they had
analysed the logical links between these rules in such a deep way that the”y
knew how to deduce them all from five of them, set down as “unprovable”,
by means of procedures very similar to modern methods [23]. U_nfortun_at.ely
their influence was fairly ephemeral, and their results were to fall into oblivion
until the day when they were rediscovered by the logicia.n.s of th'e XIXth cen-
tury. Aristotle remains as the uncontested master in L.oglc until the XYIIth
century; it is known in particular that the scholastic pl-lllf)sophers are en'tu.'ely
under his sway, and if their contribution to formal logic is far from neg.hglble
[25], it does not contain any progress at the highest level compared with the
achievements of the philosophers of Antiquity.

It is appropriate, however, to note here that it does not seem that t_;he
works of Aristotle or his successors had a notable influence on mathematics.
The Greek mathematicians conducted their research along the path opened
by the Pythagoreans and their successors of the !Vth century '(’I"heodorus,
Theeta, Eudoxus) without apparently bothering with formal loglc in the pre-
sentation of their results: a finding that should hardly astonl.sh when one
compares the flexibility and precision acquired already b).' that .txme b}.' math-
ematical reasoning, to the very rudimentary state of Arlstoteha.n' nglc. And
when logic will overtake this stage, it is again the new acquisitions from
mathematics that will guide it in its evolution. '

With the development of algebra, it was indeed impossi.ble to avoid be-
ing struck by the analogy between the rules of formal logic and the ru.les
of algebra, the ones like the others having in common the proper!:y of being
applicable to objects (propositions or numbers) which are not pre.cxsely dtlatfer-
mined. And when in the XVIIth century algebraic notation took its definitive

8 The absence of real quantifiers (with the modern mea.nil.lg) until the end of the
XIXth century, has been one of the reasons for the stagnation of formal Loglcl.

7 The case of an eminent academic is quoted who, at a recent con.fexence at Prince-
ton in the presence of Godel, would allegedly have said that nothing new had been
done in Logic since Aristotle!



6 1. FOUNDATIONS OF MATHEMATICS; LOGIC; SET THEORY.

form in the hands of Viéte and Descartes, almost immediately one can see
appearing diverse attempts at a symbolic notation intended for the repre-
sentation of logical operations; but before Leibniz, these tentative efforts, for
example like that of Herigone (1644) at writing down the proofs of elemen-
tary Geometry, or that of Pell (1659) at writing down those of Arithmetic,
remain very superficial and do not lead to any progress in the analysis of
mathematical reasoning,. . :

With Leibniz, we are in the presence of a philosopher who is also a math-
ematician of the first rank, and who will know how to draw out of his mathe-
matical experience the germ of the ideas that will bring formal logic out of the
scholastic dead-end.® A universal spirit if ever there were one, inexhaustible
source of original and fruitful ideas, Leibniz would be interested even more
in Logic as it found itself at the very heart of his grand projects for formalis-
ing language and thought, at which he never ceased working throughout his
life. Trained in his childhood in scholastic logic, he was seduced by the idea
(going back to Raymond Lulle) of a method which would reduce all human
concepts to primitive concepts, making up an “Alphabet of human thought”,
and would rebuild them in a quasi mechanical way to obtain all true proposi-
tions ([198 b], v. VII, p. 185; cf. [69a), chap. II). Still very young, he had also
conceived another much more original idea, that of the usefulness of symbolic
notations as an “Ariadne’s string” string of thought:® “The true method”, he
said, “must provide us with a filum Ariadnes, that is to say a kind of sensi-
tive and coarse means that guides the mind, in the same way as lines drawn
in geomelry and the type of operations that are prescribed to apprentices in
Arithmetic. Without that our mind would not know how to go along a long
path without straying.” ([198 b], v. VII, p. 22; cf. [69 a], p. 90). Knowing little
of the mathematics of his time until about his 25th year, it is at first in the
form of a “universal language” that he presents his projects ([69 a], chap. III);
but as soon as he comes in contact with Algebra, he adopts it as model for his

¥ Although Descartes and (to a lesser degree) Pascal devoted part of their philo-
sophical work to the foundations of mathematics, their contribution to the progress
of formal Logic is negligible. No doubt this arises from the fundamental tendency of
their thought, the effort to break free of the scholastic tutelage, which caused them
to reject everything that could be linked to it, and most especially formal Logic.
In fact in his Thoughts on the geometric spirit Pascal, as he himself recognises,
restricts himself essentially to moulding in well cast formulae the known princi-
ples from Euclidean proofs (for example, the famous precept: “Always substitute
mentally the definitions in place of the defined” ([244], v.IX, p.280) was essentially
known to Aristotle ([6], Top., VI, 4; [153 d], p.187)). As for Descartes, the rules of
reasoning that he states are above all psychological precepts (fairly vague) and not
logical criteria; as the criticism of Leibniz shows ([69 2], p. 94 and 202-203), they
only have a subjective span as a result.

® Of course, the interest in such a symbolism had not escaped the predecessors of
Leibniz as far as mathematics was concerned, and Descartes, for example, recom-
mends replacing entire figures “by very short symbols” (XVIth Rule for the direction
of the mind; [85 a], v. X, p. 454). But nobody before Leibniz had insisted with such
vigour on the universal range of this principle.
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“universal Characteristic”. By that he means a type of symbolic lfa.ngua.ge,
capable of expressing without ambiguity all human thought, of rexnfor.cmg
our powers of reasoning, of avoiding errors by means of an effort of entirely
mechanical concentration, finally constructed so that “the chimera that t(tc
person himself who presents them does not hear, would be impossible 1o wrile
down in these characters” ([198 a], v. I, p. 187). In innumerable passages
in his writings where Leibniz alludes to this grandiose project and to 'th.e
progress to which its attainment would lead (cf. [89 a], chap. IV and VI), it is
seen with what clarity he had conceived the notion of a formalised langul%g-e,
a pure combination of symbols of which only the chaining is importa.nl:l, in
such a way that a machine would be able to produce all the theorems, and
that all controversies would be resolved by a simple calculation ([198 b], v.
VII, p. 198-203). If these hopes might appear excessive, it is none the less
true that it is to this constant tendency of Leibniz’s thought that must be
tied a good part of his mathematical work, beginning with his w9rk on the
symbolism of the infinitesimal Calculus (see p. 190 fl.); he was %nms?lf. per-
fectly aware of this, and linked explicitly also to his “Characteristic” his ideas
on indicial notation and determinants ([198 a], v. II, p. 204; cf. [69 a], pp.
481-487) and his sketch of “geometrical Calculus” (see pp. 50 and 61 ff.; cf.

. [69 a}, chap IX). But in his mind the essential part had to be symbolic Logic,

or, as he puts it a “Calculus ratiocinator”, and though he does not suc':ceed
in creating this calculus, at least we see him trying to at least threfe t}rflw.
On his first attempt, he has the idea of associating with each “pnmltxye”
term a prime number, each term made up of several primitive t%ms being
represented by the product of the corresponding prime numbers;™* he se:eks
to translate into this system the usual rules of syllogism, but runs up against
major complications caused by negation (that he tries,_ fairly naturally, to
represent by a change of sign) and abandons rapidly this pa.th ([198 c), Pp-
42-96; cf. [69 a], pp.326-344). In later attempts, he seeks to give Aristotelian
logic a more algebraic form; sometimes he keeps the notaf.lon AB fo;sthe
conjunction of two concepts; sometimes he uses the notation 4 + B; he
notes (in multiplicative notation) the law of idempotence A4 =.A, remarks
that one can substitute the proposition “all A is B” by the equality A = AB
and that one can recover starting from there most of the rules of Aristotle
by a purely algebraic calculation ([198 ¢}, pp. 229-237 and 356-399; cf. [69 al,
pp.345-364); he also has the idea of the empty set (“non Ens”), and recognises

10 Tt is striking to see him quoting here as examples of reasoning “of the right type”,
“q collector’s account” or even a legal text ([198 b], v. IV, p. 295). '
11 One knows that this conception of a “logical machine” is used these days in
metamathematics, where it is of great usefullness ({181}, chap. XIII). )

12 The idea was taken up successfully by Gdodel in his work on metamathematics,
in a slightly different form (cf. [130 a] and [181], p. 254). )

13 1 eibniz only seeks to introduce disjunction into his calculus in a fevf' fra.gmepts
(where he denotes it by A + B) and does not seem to have succeeded in handling
simultaneously this operation and conjunction in a satisfactory way ([69 a], p. 363).
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for instance the equivalence of the propositions “all A is B” and “A.(not B) is
not” (loc. cit.). Purther, he remarks that his logical calculus is applicable not
only to the logic of concepts, but also to that of propositions ([198 ¢}, p. 377).
He appears to be therefore very near to “Boolean calculus”. Unfortunately,
%t appears that he was not able to free himself completely from the scholastic
influence; not only does he set himself as almost the only aim of his calculus
the transcription, into his notation, of the rules of syllogism,'* but he goes as
far as sacrificing his most felicitous ideas to the desire to recover completely
the rules of Aristotle, even those that were incompatible with the idea of an
empty set.!®

The work of Leibniz remained for the most part unpublished until the
beginning of the XXth century, and had only little direct influence. During
the whole of the XVIIIth and the beginning of the XIXth centuries, different
authors (de Segner, J. Lambert, Ploucquet, Holland, De Castillon, Gregonne)
sketched attempts similar to those of Leibniz, without ever progressing sub-
stantially beyond the point at which he had stopped; their work only had a
feeble effect, which means that most of them ignored all results due to their
predecestsors.16 It is in any case under the same conditions that G. Boole,
who must be considered to be the real creator of modern symbolic logic [29],
writes. His key idea consists in putting himself systematically in the position
of considering “extension”, so of calculating directly with sets, and writing
zy for the intersection of two sets, and z + y for their union when z and y
have no element in common. He introduces as well a “universe” denoted 1
(the set of all elements) and the empty set denoted 0, and he writes 1 — z
for the complement of z. As Leibniz had done, he interprets the relation
of inclusion by the relation zy = z (from which he extracts without dif-
ficulty the justification of the rules of classical syllogism) and his notation
for union and complements gives his system a flexibility that was missing
in his forerunners.'” Furthermore, by associating with each proposition the
set of “cases” in which it holds, he interprets the relation of implication as
an inclusion, and his calculus of sets gives him in this way the rules of the
“propositional calculus”.

1% Leibniz knew very well that Aristotelian logic was insufficient to translate for-
'mally x'natl_xez‘natical texts, but, in spite of some attempts, he never succeeded in
il;lpmvmg it in this respect ([69 a], pp. 435 and 560).

. Thesg consist of the rules “of conversion” so-called based on the postulate that

AlltA is a B” entails “Some A is a B”, which assumes naturally that A is not
empty.
18 The influence of Kant, from the middle of the XVIIIth century, without doubt
played some part in the lack of interest aroused by formal logic at this time; he
feels t.ha.t “we have no need of any new invention in logic”, the shape given to it
by Aristotle being sufficient for all applications that can be made of it ([178], v.
VIII, P 340). Concerning the dogmatic concepts of Kant concerning mathematics
;i-_fld logic, one can consult [69b).

Note especially that Boole uses the distributivity of intersection over union

which seems to have been noticed for the first time by J. Lambert. '
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In the second half of the XIXth century, Boole’s system formed the basis
for the work of an active school of logicians who improved it and completed
it at several points. It is thus that Jevons (1864) enlarged the meaning of the
operation of union z +y by extending it to the case in which = and y are
arbitrary; A. de Morgan in 1858 and C.S. Peirce in 1867 proved the duality

(CA)n(CB) = C(AU B),(CA)U(CB) = c(AnB);*®
De Morgan tackles also, in 1860, the study of relations, defining inversion
and the composition of binary relations (that is to say the operations cor-

responding to the operations G1 and G1oGy on gmphs).lg All this work is
systematically expounded and developed in the massive and prolific work of
Schrader [277]. But it is fairly interesting to note that the logicians of whom
we have been speaking do not seem very interested in the application of their
results to mathematics and that, on the contrary, Boole and Schréder espe-
cially seem to have as their principal aim to develop “Boolean” algebra by
imitating the methods and problems of classical algebra (often in a fairly
artificial way). The reasons for this attitude must doubtless be seen in the
fact that the Boolean calculus still lacked a facility for transcribing most of
gnathematical reasoning,?’ and only supplied in this way a very partial an-
swer to the great dream of Leibniz. The construction of a formalism better
adapted to mathematics — of which the introdiction of variables and quan-
tifiers, due independently to Frege [117 a, b, c] and C. S. Peirce [248 b}, make
up the major stage — was the work of logicians and mathematicians who,
unlike the above, had above all as their aim applications to the foundations
of mathematics.

Frege’s project [117 b and c] was to create a foundation for arithmetic
based on a logic formalised by a “writing of concepts” (Begriffschrift) and
we will come back later (p. 29) to the way in which he defines the natu-
ral numbers. His work is characterised by extreme precision and attention
to detail in the analysis of concepts; it is because of this tendency that he
introduces many a distinction which turns out to be of great importance in
modern logic: for instance it is he who first distinguishes between the state-
ment of a proposition and the assertion that this proposition is true, between

17 14 must be noted that statements equivalent to these rules are already to be
found in several scholastic philosophers ([25), p.67 fE.).

18 However the notion of “Cartesian” product of two arbitrary sets does not seem
to be explicitly introduced until G. Cantor ([47), p. 286); it is also Cantor who
first defines exponentiation AZ (loc. cit., p. 287); the general notion of an infinite
product is due to A. N. Whitehead ([333], p.369). The use of graphs of relations
is fairly recent; if exception is made, naturally, of the classical case of real valued
functions of a real variable, it seems to appear for the first time amongst the Italian
geometers, notably C. Segre, in their study of algebraic correspondences.

20 For each relation obtained from one or more given relations by use of our quan-
tifiers, it would be necessary, in this calculus, to introduce an ad hoc notation of

the type of the notation 8 and G, o G2 (cf for example [248 b}).
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the relation of belonging and that of inclusion, between an object z and the
set {z} reduced to this single object, etc.. His formalised logic, which con-
tains not only “variables” with the meaning used in mathematics, but also
“propositional variables” representing indeterminate relations, susceptible to
quantification, would later (through the work of Russell and Whitehead) sup-
ply the fundamental tool for metamathematics. Unfortunately, the symbols
which he adopts are hardly inspiring, of a terrifying typographic complexity
and far removed from the practice of mathematicians; which had the result
of turning away these latter and reducing considerably the influence of Frege
on his contemporaries.

Peano’s goal was at the same time much vaster and much more down to
earth; it consisted in publishing a “Formulary of mathematics”, written en-
tirely in formal language and containing, not only mathematical logic, but all
the results of the most important branches of mathematics. The speed with
which he managed to complete this ambitious project, helped by a host of
enthusiastic collaborators (Vailati, Pieri, Padoa, Vacca, Vivanti, Fano, Burali-
Forti) is witness to the excellence of the symbolism which he had adopted:
following closely the current practice of mathematicians, and introducing nu-
merous well-chosen abbreviating symbols, his language remains as well fairly
easily legible, thanks notably to an ingenious system for replacing brackets by
full stop separators [246 f]. Much notation due to Peano is today adopted by
the majority of mathematicians: we quote €, D (but, contrary to the present
use, with the meaning of “is contained in” or “implies”21), U,N, A~ B (set
of differences a — b where a € A and b € B). On the other hand, it is in the
“Formulary” that is found for the first time a thorough analysis of the general
notion of function, of those of direct image?? and reciprocal image, and the
remark that a sequence is only a function defined on N. But quantification,
with Peano, is subject to hampering restrictions (one can only, in principle,
quantify, in his system, relations of the foom A — B,A & B or A = B).
Further the almost fanatical zeal of some of his disciples laid them wide open
to ridicule; criticism, often unjustified, by H. Poincaré in particular, was a
heavy blow to the Peano school and became an obstacle to the diffusion of
his doctrines in the mathematical world.

With Frege and Peano the essential elements of the formal languages used
today were acquired. The most widespread is doubtless that hammered out by
Russell and Whitehead in their great work “Principia Mathematica”, which
happily links the precision of Frege and the convenience of Peano [266]. Most
actual formal languages are differentiated from it only by changes of sec-
ondary importance, aimed at simplifying its use. Among the most ingenious,
we quote the “functional” writing of relations (for instance € zy instead of

21 This indicates well to what extent was rooted, even in him, the old habit of
thinking “in comprehension” rather than “n extension”.

22 The introduction of this seems due to Dedekind, in his work “Was sind und was
sollen die Zahlen”, of which we will speak later ([79], v. III, p.348).
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¢ € y), thought up by Lukasiewicz, thanks to which brackets can be com-
pletely omitted; but the most interesting is without doubt the introductlop
by Hilbert of the symbol 7, which allows the consideration of the quanti-
fiers 3 and Y as abbreviation signs, the avoidance of the introduction of the
“universal” functional symbol ¢ of Peano and Russell (which is only applied
to functional relations), and finally which avoids the need to formulate the
axiom of choice in the theory of sets ([163 a], v.III, p. 183).

THE NOTION OF TRUTH IN MATHEMATICS.

Mathematicians have always been sure that they prove “truths” or “true
propositions”; such a conviction can obviously only be sentimental or meta-
physical, and it is not by getting on to mathematical grqund that it can be
justified, nor even given a meaning that does not make it a tautology. The
history of the concept of truth in mathematics is the concern therefore f’f the
history of philosophy and not of that of mathematics; but the evoh.mon of
this concept has had an undeniable influence on that of mathematics, and
because of this we can not let it go by in silence.

Let us note first that it is as rare to see a mathematician in possession
of a strong philosophical culture as to see a philosopher who has an exte:n—
sive knowledge of mathematics; the opinions of mathematicia.m:x on topics
in philosophy, even when these questions are concerned with their field, are
most often opinions received at second or third hand, coming from doubt'ful
sources. But, precisely because of this, it is these average opinions which in-
terest the mathematical historian, at least as much as the original views of
thinkers such as Descartes or Leibniz (to mention two who were also ma.tk{&
maticians of the first rank), Plato (who at least kept up with the ma:thema.tlcs
of his time), Aristotle or Kant (of whom the same could not be said).

The traditional notion of mathematical truth is that which goes back to
the Renaissance. In this concept, there is no great difference between those
objects which are the concern of mathematicians and those which are the
concern of natural science; both are knowable and man has obtained a grasp
on them both through intuition and through reason; there are no grounds to
doubt either intuition or reason, which are fallible only if used incorrectly.
“One must have”, says Pascal, “altogether a wrong spirit to reason badly about
principles so great that it is almost impossible for them to escape” ([244], v.
XII, p. 9). Descartes, by his fireside, convinced himself that “ﬂ.tere have been
only Mathematicians who were able o find some proofs, that is to say some
sure and certain reasons” ([85 a], v.VI, p. 19) and that (if his tale is to be
believed) well before he had built up a metaphysics in which “that very seme
thing”, he says, “that I previously took as a rule, namely that the objects that
we can visualise very clearly and very distinctly are all true, is only ensured
because God is or exists, and that he is a perfect being” ([85 a], v. VI, p.
38). If Leibniz objects to Descartes that it cannot be seen how to recognise
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that an idea is “clear and distinct”,?® he also considers axioms as obvious
and undisputed consequences of the definitions as soon as the expressions are
understood.?* It must not be forgotten either that, in the language of that
time, mathematics includes many sciences that we do not recognise anymore
as such, and sometimes even as far as the art of the engineer; and in the
confidence that they inspire, the surprising success of their applications to
“natural philosophy”, to the “mechanical arts”, to navigation, comes in for
a large part. '

In this way of looking at things, axioms are no more susceptible to be-
ing discussed or put into question than the rules of deduction; at most the
choice can be left to each person, according to his preferences, to reason “in
the way of the ancients” or to give free reign to his intuition. The choice
of point of departure is also a matter of individual preference, and one sees
appearing numerous “editions” of Euclid where the solid logical framework
of the Elements becomes a strange travesty; some surveys are given of the
infinitesimal calculus and rational mechanics, supposedly deduced from fun-
damentals which are remarkably badly established; and Spinoza was perhaps
giving in good faith his Ethics as being proved in the manner of geometers
“more geometrico demonstrata”. If it is hard to find in the XVIIth century
two mathematicians who agree on any matter whatsoever, if the polemics oc-
cur daily, endless and acrimonious, the notion of truth remains none the less
not in question. “Only having one truth about each object’, says Descartes,
“whoever finds it knows as much as can be known about it ” ([85 a], v. VI, p.
21).

Although no Greek mathematical text of the high period on these ques-
tions has survived, it is probable that the point of view of Greek mathe-
maticians on this subject had many more nuances. It is by experience only
that the rules of deduction were elaborated to the point of inspiring complete
confidence; before they could be considered to be above all discussion, it was
necessary to go through mainly fumblings and paralogisms. It would also be

2 “Those that have given us methods” he says in this context “give, without doubt,
some beautiful precepts, but not the means to obey them.” ({298 b], v. VII, p. 21).
And elsewhere, making fun of the Cartesian rules, he compares them to the recipes
of the alchemists: “Take what you need, act as you must, and you will obtain that
Jor which you wish” ([198 b}, v. IV, p. 329).

% On this point, Leibniz is still under scholastic influence; he still thinks that
propositions establish a link from “subject” to “predicate” among concepts. As
soon as concepts have been reduced to “primitive” concepts (which, as we have
seen, is one of his fundamental ideas), everything reduces, for Leibniz, to checking
relations of “inclusion” by means of what he calls “identical axioms” (essentially the
propositions A = A and A C A) and the principle of “substitution of equivalents”
(if A= B, A can be replaced everywhere by B ([69 a], pp. 184-206)). It is interesting
in this context to note that, in conformity with his desire to reduce everything to
Logic and to “prove everything that is provable”, Leibniz proves the symmetry and
transitivity of the relation of equality, starting from the axiom A4 = A and the
principle of substitution of equivalents ([198 a], v. VII, pp. 77-78).
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to misconstrue the critical spirit of the Greeks, their taste for discussion and
sophistry, to imagine that the “axioms” themselves that Pascal judged to be
the most obvious (and that, according to a legend spread by his sister, he
had, with infallible instinct, discovered himself during his childhood) were
not the subject of long discussions. In an area that was not that of geometry
strictly speaking, the paradoxes of the Eleates have preserved for us some
traces of these polemics; and Archimedes when he makes the observation ([5
bj, v. II, p. 265) that his predecessors made use in many situations of the
axiom to which we usually ascribe his name, ddds that what is proved by
means of this axiom “has been accepted no less than what has been proved
without 4t”, and that it is sufficient that his own results be accepted on the
same basis. Plato, in accordance with his metaphysical views, presents math-
ematics as a means of access to a “truth in itself” and the objects it deals
with as having a real existence in the world of ideas; he characterises none
the less the mathematical method precisely in a famous extract from the
Republic: “Those that are involved with geomeiry and arithmetic ... assume
even and odd, three kinds of angles; they treat them as known objects: once
assumed, they esteem that they no longer need to give account of them either
to themselves or to others, [considering it] as clear to each one; and starting
there, they proceed in sequence, in order to reach by common agreement the
goal that their research had suggested” ([250], Book VI, 510 c-e). That whic}l
makes up a proof is therefore firstly a point of departure supplying an arbi-
trary start (even though “clear to everyone”), and beyond which, he says a
bit further on, one does not try to dig; and then, a discussion that follows
in sequence a series of intermediate stages; finally, at each step, the consent
of the interlocutor guaranteeing the correctness of the reasoning. It must be
added that once the axioms are stated, no new appeal to intuition is allowed
on principle: Proclus, quoting Géminus, recalls that “we have learnt from fhe
pioneers of this science themselves, to take no account of conclusions which
are only plausible when il is a case of reasoning which must be part of our
geometric doctrine” ([153 €], v.I, p. 203).

Thus it is to experience and the cauldron of criticism that is due the
elaboration of the rules of mathematical reasoning; and if it is true, as has
been argued in a plausible way [317 d], that Book VIII of Euclid has kept
for us part of the arithmetic of Archytas, it is not surprising to see thex.:e the
rigidity of the rather pedantic reasoning that does not fail to appear in all
mathematical schools where “rigour” is discovered or believed to have been
discovered. But, once having entered into the practice of mathematicians, it
does not seem that these rules of reasoning have ever been doubted until quite
recently: if with Aristotle and the Stoics, some of the rules are deduced from
others by schemes of reasoning, the primitive rules are always assumed to be
evident. In the same way, having gone back to the “hypotheses”, “axioms”
and “postulates” that appeared to them to supply a solid foundation f9r the
science of their time (such as those for example that they put forward in the
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first “Elements” that tradition ascribes to Hippocrates of Chio, about 450 B.
C.), the Greek mathematicians from the classical period seem to have bent
all their efforts to the discovery of new results rather than to a critique of
these foundations that, at that time, could not have failed to be sterile; and,
putting aside all metaphysical preoccupations, it is from this general accord
amongst mathematicians on the bases of their science that the text of Plato
quoted above bears testimony. '

r

On the other hand Greek mathematicians do not seem to have believed
it possible to explain the “primary notions” that were their points of depar-
ture, straight line, surface, ratio of quantities; if they give “definitions” of
them, it is obviously a crisis of conscience and without any illusions about
their range. It goes without saying that on the other hand, about definitions
other than those of “primary notions” (definitions often called “nominal”),
the Greek mathematicians and philosophers had perfectly clear ideas. It is
in this context that intervenes explicitly, for the first time no doubt, the
question of “existence” in mathematics. Aristotle does not miss observing
that a definition does not imply the existence of the object defined, and that
there must be over and above that either a postulate or a proof. No doubt
his observation was derived from the practice of mathematicians; in any case
Euclid takes care to postulate the existence of a circle, and to prove that of an
equilateral triangle, of parallels, of a square, etc. as he introduces them into
his arguments ([153 €], Book I); these proofs are “constructions”; in other
words, he exhibits, basing himself on the axioms, mathematical objects that
he proves satisfy the definitions that he needs to justify.

Thus we see Greek mathematics in the classical era reaching a kind of em-
pirical certainty (whatever the metaphysical bases for it from some philoso-
pher or other might be); if it cannot be conceived that the rules of reasoning
can be questioned, the success of Greek science, and the feeling that exists
of the inopportunity of a critical revision, play a great part in the confidence
that the axioms themselves inspire, a confidence that is rather of the order of
that (almost unlimited, as well) that was put during the last century in the
principles of theoretical physics. It is in any case what is suggested by the
motto of the school “nthil est in intellectu quod non prius fuerit in sensu”,
which is precisely that against which Descartes stands out, as not giving a
firm enough basis to that which Descartes hoped to extract from the use of
reason.

One must come down to the beginning of the XIXth century to see math-
ematicians recover from the arrogance of a Descartes (not to say that of a
Kant or that of a Hegel, this latter somewhat late, as was fashionable, about
the science of his time®®), to a position as well balanced as that of the Greeks.
The first blow to the classical concepts is the establishment of non-Euclidean

25 In his inaugural dissertation, he “proves” that there were at most seven planets,
the same year that the eighth was being discovered.
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hyperbolic geometry by Gauss, Lobatschevsky and Bolyai at the beginning
of the century. We will not undertake to retrace here in detail the origins
of this discovery, the outcome of numerous unfruitful attempts to prove the
parallel postulate (see [105 a and b]). At the time its effect on the principles
of mathematics was perhaps not so deep as is sometimes said. It simply forces
the abandonment of the pretensions of the previous century to the “absolute
truth” of Euclidean geometry, and all the more, the Leibnizian point of view
that definitions imply axioms; these latter no longer appear as at all “obvi-
ous”, but rather as hypotheses of which it must be determined whether they
are adapted to the mathematical representation of the world of the senses.
Gauss and Lobatschevsky believe that the debate between the different pos-
sible geometries can be determined by experience ([206], p. 76). It is also the
point of view of Riemann, of whom the famous inaugural Lecture “On the
hypotheses which form the foundation of geometry” had as aim to furnish a
general mathematical framework for the various natural phenomena: “What
remains to be resolved” he says, “is the question of knowing to what extent and
up to what point these hypotheses are found to be confirmed by ezperience”
([259 a], p. 284). But that is a problem which visibly has nothing anymore
to do with Mathematics; and none of the previous authors seem to put into
question that, even if a “geometry” does not correspond to an experimental
reality, its theorems remain no less “mathematical truths”,2®

All the same, if it so, it is certainly no longer to an unlimited confidence in
classical “geometric intuition” that such a conviction is due; the description
that Riemann seeks to give of “multiplicities n times extended”, the object of
his work, only relies on “intuitive”?? considerations to reach a justification for
the introduction of “local co-ordinates”; from that moment on he apparently
seems to feel himself on solid ground, namely that of Analysis. But this latter
is grounded in the end on the concept of real number, which remained until
then of a very intuitive nature; and progress in the theory of functions was
leading in this respect to some very worrying results: with the research of
Riemann himself on integration, and more so with the examples of curves
without tangents, constructed by Bolzano and Weierstrass, it is the whole
of the pathology of mathematics that was beginning. For a century we have
seen so many monsters of this species that we are a bit blasé, and the most
weird teratological characters must be accumulated in order still to astound
us. But the effect produced on the majority of mathematicians of the XIXth
century went from disgust to consternation: “How” H. Poincaré asks himself,
“can intuition deceive us at this point?” ([251 d], p. 19); and Hermite (not
without a spark of humour which the commentators of this famous sentence

2 Cf. the arguments of Poincaré in favour of “simplicity” and of the “convenience”
of Euclidean geometry {[251 c], p. 67), as well as the analysis whereby, a bit later, he
reaches the conclusion that experience does not furnish an absolute criterion for the
choice of one geometry rather than another as a framework for natural phenomena.
2T Again this word is only justified for n < 3; for larger values of n, it is a case of
arguing by analogy.
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do not all seem to have perceived) declares that he “turns away with fear
and horror from this lamentable plague of continuous functions that do not
have a derivative” ([160}, v. II, p. 318). The worst was that these phenomena,
o contrary to common sense, could no longer be laid at the door of ideas
badly elucidated, as at the time of the “indivisibles” (see p. 173), since they
survived after the reform of Bolzano, Abel and Cauchy, who had established
the fo‘undation of the notion of limit in a manner as rigorous as the theory
of ratios (see p. 154). It is thus fully to the gross and incomplete character
of our geometric intuition that the account must be laid, and it is reasonable
that fsince then it has remained discredited quite justifiably as a means of
proof.

. This realisation would inevitably react on classical mathematics, starting
with geometry. In whatever respect the axiomatic construction of Euclid had
?)een held, more than one.imperfection had been noticed, and that already
In antiquity. It was the postulate on parallels that had been the object of
the greatest number of criticisms and attempts at proof; but the followers
and commentators of Euclid had also attempted to prove other postulates
(notably that of the equality of right angles) or recognised the insufficiency
of certain definitions, such as those of the straight line or plane. In the XVIth
century, Clavius, an editor of the Elements, notes the absence of a postulate
guaranteeing the existence of the fourth proportional; for his part, Leibniz
'remarks that Euclid uses geometric intuition without mentioning it explic-
itly, for example when he admits ( Elements, Book I, prop. 1) that two circles,
each of which goes through the centre of the other have a common point {[198
b], v. VII, p. 166). Gauss (who himself did not deny himself the use of such
topological considerations) draws attention to the role played in Euclidean
constructions by the notion of a point (or a straight line) being “between” two
others, notion that is however not defined ([124 a], v. VIII, p. 222). Finally,
the use of displacements — notably in the “case of equality of triangles”
— long assumed to be obvious,”® was soon to appear to the critics of the
XIXth century as relying also on unstated axioms. One ends up thus, in the
period from 1860 to 1885, with different partial revisions of the beginnings of
geon'fetry (Helmholtz, Méray, Houél) tending to remedy some of these gaps.
'But_lif is f)nly with M. Pasch [245] that the abandonment of all appeals to
Intuition is a programme properly formulated and followed with full rigour.
Tl_xe success of his enterprise soon brought him numerous emulators who,
Pnncipally between 1890 and 1910, gave quite varied statements of the ax-
ioms of Euclidean geometry. The most famous of these works were those of
Peano, written in his symbolic language [246 d], and especially the “Grund-
Iaggn der Geometrie” of Hilbert [163 c], appearing in 1899, a book which,
by its lucidity and the depth of its exposition, was to become immediately,

28

It.must be ngted however tha.t., already in the XVIth century, a commentator on
Euclid, J. Pf:letler, protested against this means of proof, in terms close to those of
modern critics ([153 €], v. I, p. 249).
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with full justification, the charter for modern axiomatics, even to the extent
of leading to forgetting its forerunners. It is indeed that, not content with
giving there a complete system of axioms for Euclidean geometry, Hilbert
classifies these axioms into different groups of different types, and sets him-
self to determine the exact area of influence of each of these groups of axioms,
not only in developing the logical consequences of each of them in isolation,
but also in discussing the different “geometries” obtained when one omits
or modifies certain of these axioms (geometries amongst which those of Lo-
batschevsky and of Riemann appear only as particular cases?®); he thus puts
clearly in the picture, in an area considered until then as one of those nearest
the reality of the senses, the freedom of which the mathematician disposes
in his choice of postulates. In spite of the disarray caused in more than one
philosopher by these “metageometries” with strange properties, the thesis of
the “Grundlagen” was rapidly adopted almost unanimously by mathemati-
cians; H. Poincaré, although hardly guilty of favouring formalism, recognised
in 1902 that the axioms of geometry are conventions, for which the notion of
“truth”, as it is normally understood, has no more meaning ([251 c], pp. 66-
67). “Mathematical truth” resides thus uniquely in logical deduction starting
from premises arbitrarily set by axioms. As will be seen later (pp. 35 ff.), the

- validity of the rules of reasoning used in making these deductions was itself

soon to be put in question, bringing about thus a complete reshaping of the
basic conceptions of mathematics.

OBJECTS, MODELS AND STRUCTURES.

A) Objects and structures of mathematics. — From Antiquity to the XIXth
century, there is a common understanding as to what are the principal objects
of the mathematicians; they are exactly those that are mentioned by Plato
in the passage quoted earlier (p. 13); numbers, quantities and figures. If, at
first, must be added the objects and phenomena which are the subject of
Mechanics, Astronomy, Optics and Music, these “mathematical” disciplines
are always clearly separated, amongst the Greeks, from Arithmetic and Ge-
ometry, and starting with the Renaissance they fairly quickly attain the rank
of independent sciences.

Whatever the philosophical nuances by which the conception of mathe-
matical objects are coloured by such and such a mathematician or philoso-
pher, there is at least one point on which there is unanimity: it is that these
objects are given to us and it is not in our power to assign to them arbi-
trary properties, in the same way as a physicist cannot change a natural
phenomenon. Truth to say, psychological reactions doubtless form one part

3 The one which appears to have struck his contemporaries most deeply is the
“non-Archimedean” geometry, that is to say the geometry having as base field an
ordered non-archimedean field (commutative or not) which (in the commutative
case) had been introduced a few years eatlier by Veronese [318].
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of these views, reactions which are not for us to follow up, but which each
mathematician knows when he wears himself out in vain efforts to seize upon
a proof which seems to slip away endlessly. From there to assimilate this
resistance to the obstacles that the world of senses sets in our path there is
only a single step; and even today, more than one, who claims an intransi-
gent formalism, would subscribe voluntarily, in his innermost being, to this
admission of Hermite: “I believe that numbers and the functions of Analysis
are not the arbitrary result of our minds; I think that they exist outside of
us, with the same character of necessity as the things of objective reality, and
we meet them or discover them, and study them, as do the physicists, the
chemists and the zoologists” ([160], v. II, p. 398).

There is no question in the classical conception of mathematics, of stray-
ing away from the study of numbers and figures; but this official doctrine, to
which every mathematician believes himself bound to bring his verbal adher-
ence, becomes no less bit by bit an intolerable burden, as new ideas accumu-
late. The embarrassment of the algebraists up against negative numbers does
not cease until analytical Geometry gives it a convenient “interpretation”;
but, well into the XVIIIth century still, d’ Alembert, discussing the question
in the Encyclopédie ([75 a], article NEGATIF), loses his nerve suddenly after
a column of fairly confused explanations, and is content to conclude that “the
rules of algedraic operations on negative quantities are generally assumed by
everybody and perceived generally as ezact, whatever idea is linked elsewhere
to these quantities”. As for imaginary numbers, the scandal is far bigger; for if
they are “impossible” roots and if (until about 1800) no way of “interpreting”
them is seen, how can one, without contradiction, talk of these indefinable
beings, and above all why introduce them? D’Alembert keeps here a prudent
silence and does not even state these questions, no doubt because he realises
that he would not be able to answer other than was done naively by A. Girard
a century earlier ([129], f. 22); “It could be said: what use are these impossible
solutions? I answer: for three things, for the certainty of the general rule, and
that there is no other solution, and for ils usefulness.”

In Analysis, the situation, in the XVIIth century, was no better. It is a
happy circumstance that analytical Geometry was to appear, as if at a des-
ignated point, to give a “representation” in the shape of a geometric figure,
of the great creation of the XVIIth century, the notion of a function, and
so assist powerfully (with Fermat, Pascal or Barrow) at the birth of the in-
finitesimal Calculus (cf. p. 193). But it is known on the other hand, to what
philosophico-mathematical controversies the notions of the infinitely small
and indivisible were going to give rise. And if d’Alembert is happier here,
and recognises that in the “metaphysics” of the infinitesimal Calculus there
is nothing other than the notion of limit ([75 a], articles DIFFERENTIEL
and LIMITE, and (75 b]), he is no more able than his contemporaries, to
understand the real meaning of expansion in divergent series, and to explain
the paradox of exact results obtained at the end of calculations with expres-
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sions deprived of any numerical interpretation. Finally, even in the. d.omafn
of “geometric certainty”, the Euclidean framework bursts: wl}‘en Stlrh.ng, in
1717, does not shrink from saying that a certain. curve has a double'lmagl-
pary point at infinity” ([299], p- 93 of the new edition), he would certa.ml.y be‘
in trouble trying to link such an “object” to commonly und‘erstood potlons,
and Poncelet who, at the beginning of the XIXth century, gives consudera.bl'e
development to such ideas in founding projective geometry (s?e ’;,). 13.1), is
content still to invoke as justification a “principle of continuity which is
metaphysical.
alto(%it:l ilt;,n conSei}\"e that, under these conditions (a.nd_at .the exac.t moment
when, paradoxically, the “absolute truth” of mathematics is proclaimed with
the greatest force), the motion of proof seems to become more .and more
blurred during the XVIIIth century, since it is out o.f thfz question to set
down, as did the Greeks, the notions on which reasoning 1s .conducted, and
their fundamental properties. The return towards rigour, which stz‘n'ts at the
beginning of the XIXth century, brings some improvemegt to this stateh of
things, but does not stop for all that the strear.n of new notions: one sees 1;1 us1
appearing in Algebra the imaginaries of Galois ([123}, p. 113-127), the idea,
numbers of Kummer [188 b], which are followed by vectors and quaternions,
n-dimensional spaces, multivectors and tensors (see pp. 6} ff.), not to speak
of Boolean algebra. No doubt great progress (which precxsgly al}ows the re-
turn to rigour, without losing any of the conquests of previous times) occurs
with the possibility of giving “models” for these new no‘tlons in more classi-
cal terms: the ideal numbers or the imaginaries of Galois are .mterpreted by
means of the theory of congruences (see pp. 82 ff.), n-d.imensmnal.geome;ry
only appears (if so desired) as a pure language for stating results in alge ;a
“with n variables”; and for the classical imaginary numbers — of which the
geometric representation by the points of a pla:ne (see pp. 16!. ff.) marks tl}ie
beginning of this flowering of Algebra — there is soon the choice between 81‘.2 e
geometric “model” and an interpretation in terms of congruences (cf. p. : ).
But mathematicians begin at last to feel sharply that it is to fight _agamst
a natural slope along which their work is draggir}g them, and that it mu?t,
be allowable, in mathematics, to reason about objects thjat Exa.ve no semub.e
“interpretation”: “It is not of the essence of mathematzgs’ ; says Boole in
1854, “to be occupied with the ideas of number an‘d qtfm:‘tztsf ([291, v. Ii, P-
13).3% The same preoccupation leads Grassmann, 1n his “Ausdehnungslehre

30 Leibniz, in this respect, appears again as a precursor: “universal Ma.tlilerzmt:cf’
he says, “is, so to speak, the Logic of the irpaggnatwn ,.a.nd must deal with ett:?rx;
thing in the domain of the imagination which is a_usceptnble to ezact detfe{dmst:ia ;oat_
([198 ], p. 348; cf. [69 a], pp.290-291); and for him, :he mastirplece o :11 er !

ics thus understood is what he calls “Combinatorics” or f.he Art of form l:m , ty
which he means essentially the science of abstract re!atmns .between mathemati-
cal objects. But just as until then the relationf.' co.nsxdexefi in m'athem:aglc's were
almost exclusively relations of quantities (qqua.hty, 'm.equa.hty, ratio), Lei m: sc.m&
ceives many other types of relations which, in his opinion, should have been studie
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of 1844, to present his calculus in a form from which the notions of number or
of geometric object are, at first, excluded.3* And, a bit later, Riemann, in his
inaugural Lecture, takes care at the beginning not to speak of “points”, but
rather of “determinations” (Bestimmungsweise), in his description of “mul-
tiplicities n times extended”, and underlines that, in such a multiplicity, the
“metric relations” (Massverhéltnisse) “can only be studied for abstract quan-
tities and can only be represented by formulae; under certain conditions, one
can however decompose them into relations of which each taken in isolation
is susceptible to a geometric representation, and in that way it is possible to
express the results of the calculation in a geometric form” ([259 a), p. 2786).
From that moment, the expansion of the axiomatic method is an accom-
plished fact. If, for a while longer, it is believed useful to control, when possi-
ble, the “abstract” results by geometric intuition, at least it is admitted that
the “classical” objects arg no longer the only ones that the mathematician
can legitimately study. It is that — precisely because of the multiple “in-
terpretations” or “models” that are possible — it has been recognised that
the “nature” of mathematical objects is in the end secondary, and that it
matters little, for example, that a result is presented as a theorem of “pure”
geometry, or as a theorem of algebra by the means of analytical geometry.
In other words, the essence of mathematics — this elusive notion that could
until then only have been expressed by vague names such as “general rule”
or “metaphysics” — appears as the study of relationships between objects
that are only (voluntarily) known and described by some of their properties,
precisely those that are put as axioms at the foundations of their theory. It is
this that had already been clearly seen by Boole in 1847, when he wrote that
mathematics deals with “operations considered in themselves, independently
of the diverse objects to which they can be applied” ([29], v. I, p. 3). Hankel,

systematically by mathematicians, such as the relation of inclusion, or what he calls
the relation of univoque or plurivoque “determination” (that is to say the notions
of mapping and of correspondence) ([69 a], pp. 307-310). Many other modern ideas
appear in his writing on this subject: he remarks that the different relations of
equivalence of classical geometry have in common the properties of symmetry and
transitivity; he conceives also the notion of a relation which is compatible with
the relation of equivalence, and expressly notes that an arbitrary relation does not
necessarily have this property ([69 a], pp. 313-315). Of course, he presupposes there
as elsewhere the use of a formalised language, and even introduces a symbol meant
to denote an arbitrary relation ([69 a), p. 301).

31 It must be recognised that his language, of a very philosophical bent, was hardly
meant to seduce the majority of mathematicians, who would feel uneasy in front of
a formula such as the following: “Pure Mathematics is the science of the individual
object in as much as it is born in thought” (Die Wisssenschaft des besonderen Seins
als eines durch das Denken gewordenen). But the context shows that Grassmann
meant by that in a fairly precise way axiomatic mathematics in the modern sense
(except that he fairly curiously follows Leibniz in considering that the bases of this
“formal science”, as he calls it, are the definitions and not the axioms); in any case,
he insists, like Boole, on the fact that “the name of science of quantities does not
fit the whole of mathematics® ([134), v. I, pp.22-23)
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in 1867, inaugurating the axiomatisation of algebra, d'efends a mathematlcs
that is “purely intellectual, a pure theory of forms, which has as its purpose,
not the combination of quantities, or of their images, the number.s, but' ob-
jects of thought (“Gedankendinge”) te whick may correspond eﬂect,wc objects
or relations, even though such a correspondence is not nec(?ss’izry ([14613 p-
10). Cantor, in 1883, echoes this claim of a “free mathematics by proclaim-
ing that “mathematics is entirely free in its development, and zi's concegts
are only linked by the necessity of being consistent, and are co-’ordmated with
concepts introduced previously by means of precise de.ﬁmtwns’. ([47], p.182).
Finally, the revision of Euclidean geometry succeeds in spreading an'd [:\‘opu—
larising these ideas. Pasch himself, although still att.a,c%led toa certain “real-
ity” of geometric objects, recognises that geometry is in fe}ct mde.pendent of
their significance, and consists purely in the st.udy of thex'r re'la.tlons ([.24%5],
p. 90); a concept that Hilbert pushes to its logical conclus.mn in underlining
that even the names of the basic notions of a mathematical theory can be
chosen arbitrarily,®? and that Poincaré expresses by saying that t'he axioms
are “disguised definitions”, thus completely reversing the scholastic point of
view. ' ) ;
It would thus be tempting to say that the modern notion of structu're
is attained in substance around 1900; in fact it will need stiI.l another thirty
years of apprenticeship before it appears in all its glory. It is no doubt .not
difficult to recognise structures of the same kind whex'1 they have a fairly
simple nature; for the group structure, for example, this stage was reached
already by the middle of the XIXth century. But at the same time, Hankel
can be seen fighting — without quite succeeding — to Efrmg out t‘he general
ideas of field and extension, that he does not succeed in expressing except
in the form of a “principle of permanence” which is semi meta.pl;y.smal [146],
and which will be only formulated in a definitive form by Steinitz [204 a]
40 years later. Above all it has been fairly difficult, in th‘i‘s .mat”t.er, to frge
oneself from the impression that mathematical objects are “given to us with
their structure; only a fairly long use of functional Analysis has been able to
familiarise modern mathematicians with the idea that, for example, there are
several “natural” topologies on the rational numbers, and several measures on
the number line. With this disassociation the transition to general definition
of structures was finally realised. . . ) i
B) Models and isomorphisms. — The intervention of the notion of mode}
or “interpretation” of one mathematical theory by means of 'another will
have been noticed on several occasions. That is not a recent idea, and no

32 Agin a famous anecdote, Hilbert was keen to express this idea by saying tl}at one
could replace the words “point”, “straight line” and “pla..ne” by “table”, “chair” ?{ng
“beer mug” without changing any of the geometry. It is curious that one c;:n n
already in d’Alembert an anticipation of this pun: “One can give words whatever
meaning one wants” he writes in the Encyclopédie ([75 al, article DEFI;‘IItTIS'N);
“[one could] strictly speaking create parts qf Geometry which are ezact (but ridicu-
lous) by giving the name triangle to what is normally called a circle”.
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doubt what can be seen here is 2 manifestation ceaselessly recurring of a
deep feeling for the unity of the various “mathematical sciences”. If one can
take as authentic the traditional maxim “All things are numbers” of the first
Pythagoreans, that can be considered as the trace of a first attempt to bring
back the geometry and algebra of the times to arithmetic. Although the dis-
covery of the irrationals seemed to close for ever that route, the reaction to
which it gave birth in Greek mathematics was a second attempt at synthe-
sis this time taking geometry as the basis, and absorbing among others the
solution methods for algebraic equations inherited from the Babylonians.?
It is known that this conception was to remain until the fundamental reform
of R. Bombelli and of Descartes, assimilating every measure of quantity to
a measure of length (in other words, to a real number; cf. p. 151). But with
the creation of analytical geometry by Descartes and Fermat, the tendency
is again reversed, and a much tighter fusion of geometry and algebra is ob-
tained, but this time to the benefit of algebra. Further, elsewhere, Descartes
goes further and conceives of the essential unity of “all these sciences that
are commonly called Mathematics ... Even though their subjects are differ-
ent’, he says “they still do not fail to converge, in that they consider nothing
other than the various relations or ratios that are 1o be found there” ([85
a], v. VI, pp. 19-20).34 However, this point of view only tended to make
Algebra the fundamental mathematical science; a conclusion against which
Leibniz protests vigorously, who also himself, as has been seen, conceived of a
“universal Mathematics”, but on a much vaster scale and already quite close
to modern ideas. Making precise the “accord” of which Descartes spoke,
he glimpses, in fact, for the first time, the general notion of isomorphism
(which he calls “similitude”), and the possibility of “identifying” relations or
operations that are isomorphic; he gives as examples addition and multiplica-
tion ([69 a], pp. 301-303). But these audacious views remained without echo
amongst his contemporaries, and one must await the expansion of Algebra
which takes place around the middle of the XIXth century (see pp. 51 ff.)
to see the beginnings of the realisation of the Leibnizian dreams. We have
already underlined that it is at that moment that the “models” multiply and
that it becomes usual to go from one theory to another by a simple change of
language; the most striking example of this is perhaps duality in projective
geometry (see p. 132), where the practice, frequent at that time, of printing
face to face, in two columns, the theorems “dual” one to the other, doubtless

%8 Arithmetic remains however outside this synthesis; and it is known that Euclid,
after having developed the general theory of ratios between arbitrary quantities,
develops independently the theory of rational numbers, instead of considering them
as particular cases of ratios of quantities (see pp. 148).

34 1t is fairly interesting, on this point, to see Descartes getting closer to arithmetic
and to “combinations of numbers”, the “arts ... where order reigns more fully, as
are those of artisans who make cloth or carpets, or those of women who embroider
or make lace” ([85 a], v. X, p. 403), as if in anticipation of modern studies on
symmetry and its relations with the notion of group (<f. [331 c]).
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plays a great part in the full realisation of the notion of isomorphism. From
a more technical point of view, certainly the notion of isomorphic groups for
abelian groups is known to Gauss, for groups of permutations to Galois (cf.
pp. 51 fI.); it is acquired in a general way for any group whatsoever aroun'd
the middle of the XIXth century.*® Following this, with each new axiomatic
theory, it is a natural development to define a notion of isomorphism;.but
it is only with the modern notion of structure that it was ﬁna%ly recognised
that every structure carries within itself a notion of isomorphism, and that
it is not necessary to give a special definition of it for each type of structure.
C) The arithmetisation of classical mathematics. — The use, more and
more widespread, of the notion of “model” was also going to allow the real-
isation in the XIXth century of the unification of mathematics dreamed of
by the Pythagoreans. At the beginning of the century, whole numbers and
continuous quantities seemed as irreconcilable as ever in antiquity; real num-
bers remain linked to the notion of geometric quantity (at least to that of
length), and it is to this latter that appeal had been ma.de for the “models”
of negative numbers and imaginary numbers. Even rational nun}bers were
traditionally attached to the idea of the splitting of a quantity into equal
parts; only the whole numbers remained apart, as “ezclusively the product of

. our minds” as is said by Gauss in 1832, putting them in opposition to the

notion of space ({124 a], v. VIII, p. 201). The first efforts to bring toge't}'ler
Arithmetic and Analysis were made at first with rational numbers (posmx.le
and negative) and are due to Martin Ohm (1822); they were taken up again
around 1860 by several authors, notably Grassmann, Hankel and Wexerst'rass
(in his unpublished lectures); it is to this latter that it appears is due the 1d_ea.
of obtaining a “model” of the positive rational numbers or of whole negative
numbers by considering classes of pairs of whole numbers. But the 'mos!; im-
portant step remained to be taken, namely to find a “model” of irrational
numbers in the theory of rational numbers; around 1870, it had becom'e an
urgent problem, in view of the necessity, after the discovery 'of. “pa.tl_lolo'gxcal”
phenomena in Analysis, to eliminate every trace of geometric xn.tultlon in the
vague notion of “quantity” in the definition of real numbers. It is known that
this problem was solved around this time, almost simultaneously by Cantor,
Dedekind, Méray and Weierstrass, and using fairly different methods (see
. 155).
F Fro)m this moment, whole numbers became the foundation of all classi‘ca.l
mathematics. Further, “models” based on Arithmetic acquired still more im-
portance with the extension of the axiomatic method and the concepi.;lon of
mathematical objects as free creations of the mind. There remained in fact
one restriction to this freedom claimed by Cantor, the question of “t.axistence”
which had already preoccupied the Greeks, and which arose here in a much

3% The word “isomorphism” itself is introduced in group theory at about tlfe same
time; but at first, it is used to designate surjective homomorphisms, Suahﬁed as
“merihedral isomorphisms”, whereas isomorphisms proper are called “holohedral
isomorphisms”; this terminology would remain in use until the work of E. Noether.
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more immediate way, precisely since all appeals to an intuitive representation
had now been abandoned. We will see later (pp. 36 ff.) of what a philosophico-
'mathernatical maelstrom the notion of “existence” was going to be the centre
in the first years of the XXth century. But in the XIXth century that had
pot bgen reached, and to prove the existence of a mathematical object hav-
ing given properties, it was simply, as for Euclid, “constructing” an object
with given properties. That was precisely what arithmetic “models” were for:
once the real numbers were “interpreted” in terms of whole nutrnbets comple}é
num}aers and Euclidean geometry were also, thanks to analytical éeometry
apd it was the same for all new algebraic objects introduced since the begin:
ning of the century; finally — a discovery that had a great effect — Beltrami
and K_lein had even obtained Euclidean “models” of the non-Euclidean ge-
2mfetnes o'f Lobatschevsky and of Riemann (see p. 134), and in consequence

arithmetised” (and thereby completely justified) these theories which had
at first sight aroused such distrust.

D) The aziomatisation of arithmetic. - It was in line with this evolution
that a subsequent turn towards the foundations of arithmetic itself was made
and indeed that is what can be seen around 1880. It appears that before the,
XI)'(th century no attempt had been made to define addition and multipli-
cation of whole numbers except by a direct appeal to intuition; Leibniz is
1‘:‘he oply one who, faithful to his principles, warns expressly that “truths” as

obvious” as 2 + 2 = 4 are no less susceptible to proof if one thinks about
the definitions of the numbers involved ({198 b], v. IV, p. 403; cf. [69 a], p
2.03_); and he did not consider at all that commutativity of addi’tion and n;ul;
tiplication were intrinsic.>® But he does not take his thoughts on this subject
any f.urth.er, and about the middle of the XIXth century, still no progress
in this direction had been made: Weierstrass himself, whose lectures con-
tributed considerably to extend the “arithmeticising” point of view, does not
seem to have felt the need for a logical clarification of the theory’ of whole
pumbers. The first steps in this direction seem to be due to Grassmann, who
in 1861 ([134], v. IIy, p. 295) gives a definition of addition and multipli::atiox;
for w!lol.e .numbers, and proves their fundamental properties (commutativity,
as§OC}at1v1ty, distributativity) using only the operation £ — z + 1 and the’
pnncxple of induction. This latter had been clearly conceived and used for the
first time in the XVIIth century by B. Pascal ([244], v. III, p. 456)°7 — even
!:hough one can find in Antiquity some more or less conscious applications of
it — and was currently used by mathematicians since the second half of the
XVIIth century. But it is only in 1888 that Dedekind ([79], v. III pp-359-361)
stated a complete system of axioms for arithmetic (2 system rep;,ated 3 years
later by Peano and usually known by his name [246 c]), which contained in

36
As examples of non-commutative o i i i i
es perations, he points to subtraction, division
and exponentiation ([1?8 b], v. VII, p. 31); he had at one time even tried to introduce
g},lch operations into his logical calculus ([69 a], p. 353).
See also [45]
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particular a precise formulation of the principle of induction (that Grassmann
uses yet without stating it explicitly).

With this axiomatisation, it seemed that the definitive foundations of
mathematics had been reached. In fact, at the very moment when the axioms
of arithmetic were being clearly formulated, these same, for many mathemati-
cians (starting with Dedekind and Peano themselves) were already deprived
of this role of primordial science, in favour of the latest arrival among the
theories of mathematics, the theory of sets; and the controversies that were
going to unravel around the notion of whole number cannot be isolated from
the great “crisis of the foundations” of the years 1900-1930.

THE THEORY OF SETS.

It can be said that at all times, mathematicians and philosophers have used
reasoned arguments from the theory of sets in a more or less conscious way;
but in the history of their conceptions of this subject, one must separate
sharply all questions linked to the idea of cardinal number (and in particu-
lar to the notion of infinity) from those that only introduce the notions of
‘belonging and inclusion. These latter are among the most intuitive and seem
never to have raised controversy: it is on them that one can most easily base a
theory of syllogism (as Leibniz and Euler were to show us), or axioms such as
“the whole is greater than the sum of its parts”, without talking about that
which, in geometry, is concerned with intersections of curves and surfaces.
Until the end of the XIXth century, no problem arises in talking about the
set (or “class” with some authors) of objects possessing such and such a given
property;>® and the famous “definition” given by Cantor (“By a set is meant
a gathering into one whole of objects which are quite distinct in our intuition
or our thought’ ([47), p. 282)) will give rise, at the time of its publication,
to hardly any objections.as It is altogether different as soon as the notion of
set is mixed with that of number or quantity. The question of the infinite
divisibility of the line (doubtless posed already by the first Pythagoreans)
was, as is known, to lead to considerable philosophical difficulties: from the
Eleates to Bolzano and Cantor, mathematicians and philosophers will throw
themselves without success against the paradox of the finite quantity made
up of an infinity of points without size. It would be of no interest to us to
retrace, even summarily, the interminable and impassioned polemics that are
aroused by this problem, that constituted a ground particularly favourable
to metaphysical or theological digressions; let us note only the point of view

38 We have seen earlier that Boole does not even hesitate to introduce in his logical
calculus a “Universe” 1, the set of all objects; it does not appear that at the time
this conception was criticised, even though it has been rejected by Aristotle, who
gave a proof, fairly obscure, aiming to show its absurdity ([6), Met. B, 3, 998 b).
3% Frege seems to be one of the rare contemporary mathematicians who, not without
cause, spoke out against the wave of similar “definitions” ([117 ¢}, v. I, p. 2).



