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Preface

THE purpose of this book is to present a straightforward
introduction to complex numbers and their properties.
Complex numbers, like other kinds of numbers, are essen-
tially objects with which to perform calculations azcording
to certain rules, and when this principle is borne in mind,
the nature of complex numbers is no more mysterious than
that of the more familiar types of numbers. This formal
approach has recently been recommended in a Report?
prepared for the Mathematical Association. We believe that
it has distinct advantages in teaching and that it is more in
line with modern algebraical ideas than the alternative

geometrical or kinematical definitions of v — 1 that used to
be proposed.

On the other hand, an elementary textbook is clearly not
the place to enter into a full discussion of such questions
as logical consistency, which would have to be included in
a rigorous axiomatic treatment. However, the steps that had
to be omitted (with due warning) can easily be filled in by
the methods of abstract algebra, which do not conflict with
the ‘naive’ attitude adopted here.

I should like to thank my friend and colleague Dr. J. A.
Green for a number of valuable suggestions, especially in
connection with the chapter on convergence, which is a
sequel to his volume Sequences and Series in this Library.

WALTER LEDERMANN

t+ The T'eaching of Algebra in Sixth Forms, Chapter 3. (G. Bell & Sons,
Ltd., London, 1957.)
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CHAPTER ONE
Algebraic Theory of Complex Numbers

1. NUMBER SYSTEMS

Before defining complex numbers let us briefly review
the more familiar types of numbers and let us examine why
there are different kinds of numbers.

The most primitive type of number is the set of natural
numbers 1, 2, 3, . . ., which the child learns for counting
objects. Arithmetic, the science of numbers, is based on the
fact that numbers can be added and multiplied, subject to
certain rules, to which we shall presently return in more
detail. It is the existence of these two laws of composition
and their mutual relation that we shall regard as the typical
feature of all numbers and that will serve us as a guide
for introducing new systems of numbers for various pur-
poses.

Let us recall how in the school curriculum we proceed
from the natural numbers to more elaborate systems. The
attempt to make subtraction always possible, that is to solve
the equation a+x=>5 for x when a and b are given, leads to
the introduction of zero (one of the great achievements of
the human mind!) and of the negative numbers. We now
have the set of all integers (whole numbers) ... — 3, — 2,
-1,0,1,2,3,...Next, when we wish to carry out division,
we have to solve equations of the form ax=>d, where a and
b are given integers and « is non-zero. In order to make the
solution possible in all cases it is necessary to introduce the
rational numbers (fractions). These numbers are denoted by
symbols b/a, where a and b are integers and a is non-zero.

When this stage has been reached, the four rules of arith-

-



ALGEBRAIC THEORY OF COMPLEX NUMBERS

metic, that is addition, subtraction, multiplication and
division apply without restriction, always excepting division
by zero. These basic operations are governed by the follow-
ing general laws, which are of fundamental importance in
mathematics.

I. a+b=b+a (commutative law of addition).
1I. (a+b)+¢—a+(b—|—c) (associative law of addi-
tion).
III. a+x=>b has a unique solution, written x=b—a
(law of subtraction).
IV. ab=ba (commutative law of multiplication).
V. (ab)c=a(bc) (associative law of multiplica-
tion).
VI. ax=b (a#0) has a unique solution x=b/a (law
of division).
VII. (a+b)c=ac-+bc (distributive law).

Most of these laws, perhaps in a different guise, are so
familiar to the reader that he might be unaware of their
existence. Thus the associative law of addition implies that
a column of figures can be added by starting either from
the top or from the bottom. Again, the distributive law is
more popularly known as the principle of multiplying out
brackets.

The rational numbers are adequate for dealing with the
more elementary questions of arithmetic, but their defici-
ency becomes apparent when we consider such problems as
extracting square roonts. For example, it can be shown that
v/2 cannot be expressed in the form m/n, where m and n
are integers, i.e. there are no integers m, n (#0) such that
m*=2n?, Again, when we pass from algebra to analysis,
where limits of sequences play a fundamental part, we find
that the limit of a sequence of rational numbers is not
necessarily a rational number.} The situation may be
described by using a single co-ordinate axis

t Sec J. A. Green, Sequences and Series, in this series, p. 7.
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on which in the first place we mark all the integers in a
certain scale. Then we. imagine all the rational numbers
inserted, e.g. — 7/5, —1/4, 1/2, . . . But even when this has
been done, there will be many points on the line against
which no number has been entered. For instance when we
lay down a segment of length +/2 (the diagonal of a square
of unit sides) by placing onc end at 0, the other end-point
falls on a point of the scale which has as yet no number
attached to it. On the other hand, we intuitively accept the
fact that every segment ought to have a length which is
measured by some ‘number’. In other words, we postulate
that every point on the axis possesses a co-ordinate which is
a definite number, positive if the point is on the right of 0
and negative if it is on the left of 0. This number need not
be a rational number. The set of numbers which in this
way fill the whole line, is called the set of real numbers;
they comprise the familiar rational numbers, the remaining
real numbers being called irrational, such as v2, e, =, log 2,
etc. (Of course, the word irrational means that the number
is not the ratio of two integers and has nothing to do with
the idea that something irrational is beyond the realm of
reason.) Alternatively, the real numbers may be described as
the set of all decimal fractions. A terminating or a recurrent
decimal fraction corresponds to a rational number, whilst
the other fractions represent irrational numbers.

From the way in which real numbers are depicted on a
line it is clear that there exists an order relation among them,
that is any two real numbers a and b satisfy either a=b or
a<b or a>b. This is indeed an important property when
we wish to use numbers for measuring. But in the present
algebraical context we are much more concerned with the
fact that real numbers, like rational numbers, can be added

3
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and multiplied and that they obey the laws I to VII listed
on p. 2. We take the view that the existence of the two
modes of composition with their laws makes numbers de-
serve their name. Numbers are essentially things to be com-
puted, and any other properties, however useful for certain
purposes, are not part of the definition of number. One of
these secondary properties is the fact that real numbers can
be classified into positive and negative numbers together
with the usual deductions from it, such as ‘the product of
two negative numbers is positive’.

For a long time it was held that arithmetic had reached
saturation with the introduction of the complete set of real
numbers. Indeed, there was no obvious geometrical or
technical problem that called for the creation of new num-
bers. Yet, one of the simplest algebraical questions remains
in an unsatisfactory state when only real numbers are avail-
able. For we should then be forced to admit that some
quadratic equations have solutions whilst others have none.
On the other hand, it is easy to see that all quadratic equa-
tions would have solutions if only we could solve the special
equation

x*4+1=0, (1.1)

for this would assign a meaning to +/— 1 and hence to v — a,
where a is any positive number. Indeed, we could simply
put v—a=+v— 1va. Now it is obvious that (1.1) cannot
have a real solution, since if x is real, x* is never negative
and cannot therefore be equal to — 1. So in order to make
(1.1) soluble we have to introduce a new type of number,
for which the rule ‘the square of any number is positive’
certainly does not hold. But this rule, or indeed anything
else concerning positiveness and negativeness is not a
consequence of the seven fundamental laws listed on p. 2,
and it is therefore quite conceivable that these laws can be
satisfied by symbols or numbers to which the terms positive
and negative do not apply.

We now formally introduce a symbol ¢ which we treat in
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the same way as an indeterminate x in algebra, except that ¢
has the additional property that

2=—1. (1.2)

More . precisely, we (tentatively) postulate that when 7 is
adjoined to the existing real numbers, addition and multi-
plication in the enlarged system will still obey the seven
fundamental laws despite the bizarre stipulation (1.2).
On this assumption, we deduce from (1.2) that

P, =1, =i, d=—1, ... (1.3)

Thus a polynomial in 7, that is an expression of the form
ag+ai+agdtazgi+a,0t+ . .. +ant®, where the co-effici-
ents a,, a,, . . ., an are real, reduces to the simple form a5,
where a=a,— ay+a,—... and b=a,—ag+as—... are
real numbers. A symbol of the form
a=a-+1b or a}bi

where a and b are real, will be called a complex number.
The algebraical and other properties of these numbers, as
we shall feel justified in calling them, will be studied in the
remainder of this book.

2. THE ALGEBRAIC THEORY

The first prerequisite for a set of objects to qualify as
numbers is that they should be capable of being added and
multiplied. The natural way to define addition is to put

(a+ib)+(c+id)=(a-+o)+i(b+d), (1.4)
collecting terms with 7 and terms without 7. For example,
(3+20) -+ (5+60)=8-+ 83, (— 1+4)+(2+(~ 7)i)=14+(~ ).
As regards multiplication, we obtain by formal multiplica
tion

(a+ib)(c+id)=ac+ adi+bci+bdi?,
whence by (1.2),

(a+1b)(c+id)=(ac —bd)+i(ad+bc). (1.5)
The definitions (1.4) and (1.5) constitute the basis for an
5
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algebraical treatment of complex numbers. Although these
definitions appear to be quite natural or even obvious, they
can be accepted only if they are compatible with the seven
fundamental laws. This is indeed the case, but the verifica-
tion of this fact is somewhat tedious and we ask the reader
to take it on trust.

A complex number a+-ib is completely given when the
real numbers a and b are known. The numbers a--7b and
c+1id are equal if and only if simultaneously a=c and b=d.
Thus an equation involving complex numbers is equivalent
to two equations between real numbers.

It is possible to think of a complex number as an ordered pair
of real numbers (a, b), and the formulae (1-4) and (1-5) then
correspond to rules for adding and multiplying such pairs. Thus

(a, b)+(c, d)=(a+c, b+d)
(a, b)(c, d) =(ac— bd, ad +bc).
However, we prefer to regard a complex number as a single
mathematical entity and, whenever possible we use a single
letter to denote a complex number, thus « =a+1b.

The real numbers a and b are called the real part and the

tmaginary part of « respectively, and we write

a= Ra, b= Sa.
Note that the imaginary part of a is in fact a real number.
When fa=0, the complex number « reduces to a-+10, and
this symbol behaves in every way like the real number a.
In this case the rules for addition and multiplication reduce
to

(a+10)+(c+:0)=a+c+i0

(a+10)(c+10)=ac-+10.
We shall therefore simply write a for a+70 and we accord-
ingly regard the real numbers as special cases of complex
numbers, namely those complex numbers whose imaginary
parts are zero. Note, in particular, that the multiplication
of a complex number by a real number follows the simple

rule.
a(c+id)=(c+id)a=ac+iad.
6
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The complex zero and the complex unit are the same as the
real 0 and 1. A complex number of the form b, whose real
part is zero is called a purely imaginary number. There is
no need to comment on the contraction of notation whereby
a+-(— b)i is written as a— 7b. Subtraction is evidently given
by the formula
(a-+ib)~ (c-+id)=(a— ) +i(b— d).

We defer the discussion of division until we have intro-
duced a few more useful concepts and formulae.

With every complex number a=a-:b we associate the
conjugate complex number @=a— 1b. Thus @=a means that
ais real, that is 5=0; 3= — « holds if and only if « is purely
imaginary. The passage from « to & consists merely in re-
placing 7 by — . It should be noted that every significant
algebraical statement about 7 is also true about — #, because
both symbols satisfy the defining relation i?=(—i)*= -1,

It is easy to verify the important rules

atp=a+p (1.6)
af=af (1.7)
For example, (1.7) means explicitly that in the notation of
(1.5) (ac— bd)—i(ad+bc)=(a— ib)(c— id). In particular, we
have that «*=(a)? etc. An interesting result is obtained
when we multiply « by &, thus
ad=(a+1ib)(a—ib)=a®— (ib)*=a>}b?,
which is real and positive, except when a=0, in which case
it is obviously zero. The non-negativet real number

la]|=v(a*+8%) = v {( Ro}* +(Fa)} (1.8)
is called the modulus (absolute value) of a, and we have that
az=|al% (1.9)

We remark once more that |a| =0 if and only if a=0 and
that for all complex numbers, other than zero, |«|>0. Of
course, different complex numbers may have the same

1+ We adopt the convention that the square root of a non-negative real
number always stands for the positive square root,
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modulus, for example, conjugate complex numbers always
have the same modulus, thus |a|=|a|. Again, if a=cos 0
++isin 6, where 0 is an arbitrary real number, then |«|=
v/(cos?0+sin?0)=1. When a=a is real, the definition (1.8)
reduces to a=+/a?, which is equal to a if a>0 and is equal
to —a if a<0. This agrees with the definition of the
modulus |a| of a real number a, which is therefore general-
ized by (1.8).

Let B=c+}id be another complex number. We want to
consider the modulus of the product «f. Using (1.7) and
(1.9) we find that

|oB|2=(cB)(@B) =aBap=aapf=|«*|A[*.  (1.10)
Since the moduli are never negative the extraction of the
square roots introduces no ambiguity, and we arrive at the
very simple result that

|l =Ia| [B]- (1.11)
When we wish to translate this result into a statement about
real numbers, we work out |af| by substituting in (1.8) the
values for #(ap) and F(af) from (1.5), thus
|aB|2=(ac— bd)*4-(ad+bc).

Hence (1.10) is equivalent to the interesting identity

(ac— bd)*+4-(ad+bc)? =(a?4-b*)(c*+d°),
which of course could be readily verified by direct calcula-
tion. In particular, when a=p, the multiplication formula
(1.11) becomes |a?|=|al?, and by repeating this argument
we find that |a#|=|a|®, where n is any positive integer.

Examples.
i|=|—i]=1, | - 5|=5. [14i|=v(1*+1})=v2.
(141)}| =4. |tan 6+1]=+/{(tan 0)*+1%} =|scc 6].
We can now describe a simple solution to the problem of
division. Let a=a+ib and B=c+id be given complex
numbers and suppose that a##0. It is required to find a
number §=x-iy such that

ae=p8(a¢.0) (1.12)
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Let us assume for a moment that there exists such a num-
ber £. Then on multiplying (1.12) by « we find that aaé=
apB, that is

(a2 4-b2)(x+-1y)=(a— ib)(c+id) =(ac+-bd)+-i(ad— bc).
On comparing real and imaginary parts on both sides we

see that
ac-+bd ad—- be

WL W T
Thus if there is a solution at all, it must be given by
ac+bd ad—bc 1 _
§= b +1 25 =lalz‘*ﬁ-
Conversely, it is easy to see that (1.13) does in fact satisfy

X

(1.13)

1 .
(1.12). Indeed, a|—&—3&3=%ﬁ=ﬁ._The unique solution,

exhibited in (1.13), will be written B/a or Ba~?, or a”'B.
There is no need to memorize the explicit formula for f/a.
The argument which shows that there is such a complex
number is equivalent to the familiar ‘rationalization of
denominators’ in working with surds. Indeed, it should be
borne in mind that, after all, 7=+ — 1 is a surd. To simplify
a complex fraction we multiply numerator and denomina-
tor by the conjugate complex of the denominator, thus

c+id _(c+id)(a— ib) (ac+bd)+i(ad— bc)

a+ib~ (a-t+ib)(a—ib) a*+-b* !
which is equivalent to (1.13). In particular, we note that if
a#0,

(1.14)

1

o4

l_i_ a—1b __1_
&"]al‘«’_ahi—bz’ "o

Summarizing, we can say that complex numbers are mathe-

matical objects for which addition, multiplication, subtrac-

tion and division are defined in such a way that the seven

fundamental laws are satisfied. The real numbers may be

regarded as particular cases of complex numbers, so that

any general property of complex numbers also holds for real
9
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numbers. However, the converse of this statement is not
true. For example, there is no simple order relation between
complex numbers and the symbol « <g is not defined, nor
is there any sense in referring to a complex number as being
positive or negative. These are attributes of real numbers
which cannot be transferred to complex numbers.

The simplest type of problem consists in reducing an
expression involving complex numbers to its standard form,
that is to the form x--7y, where x and y are real. This will
be illustrated in the following examples.

Example 1.
(1420 144i+42  — 3440 (= 3+4)(1+9)
1-i —  1-¢ = 1-i = (1=9)(1+9)
_-7+i_ 7 1,
=Tz =3t
Example 2.
I S T S b
144 1-20 (144)(1-14) (1 20)(1+2i)
_1-i 142% 7 1,
=2 775 T10 10"
Example 3.
3 4k
1+i+z“+i‘+i‘+i‘+i‘+i’=:—_::=11—_f:.)—’=0.

Let f(x)=aux"+ax"1+...4an_jx+an be a poly-
nominal with real coefficients a,, a,, a,, ..., ag. If we sub-
stitute for x a complex number «, we obtain the number

flo)=ap"+aam1+a,an- . . . +an_jatan. (1.16)

We now wish to find f(a). By a repeated application of (1.6)

and (1.7) we may do this by placing a bar across each term

on the right-hand side of (1.16) and across all the factors

of this term. But since the coefficients are real dy=a,,
10



