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Preface

The traditional integral equations method was for many years the most powerful
method for proving the main existence problems of mathematical physics connected
with partial differential equations. Now by means of functional analysis methods and
the theory of distributions it has become possible to investigate general partial
differential operators. The general theory of partial differential equations has
developed in such a way that many contemporary investigations are based on the so-
called micro-analysis method arising from the ideas and methods of using
pseudodifferential and Fourier integral operators. Thus in the general theory of
partial differential equations integral equations no longer plays their traditional role as
a tool of investigation.

On the other hand many thin and complete results in the theory of partial
differential equations with two independents were obtained by means of the theory of
functions of complex variables and the theory of one-dimensional integral equations,
especially singular ones.

The main themes of this book are systems of partial differential equations of
nonclassical type (including composite type) and the main tool of their investigation,
developed by the author, is the method of singular integral equation on multiply
bounded domains.

Since systems of partial differential equations of composite type possess at every
point of the considered domain both elliptic and hyperbolic properties, the first
question arising is how to formulate well-posed problems for them.

In the case of systems with two independent variables, well-posed problems in a
bounded domain were formulated in 60 years. In Dzhuraev, 1989 the method of
singular functional equations was elaborated and hence the normal solvability theory
was formulated and the index of well-posed problems through their coefficients was
calculated. Unfortunately this theory was not extensible to higher dimensions,
because of many difficulties arising with the theory of singular integral equations in
high-dimensional bounded domains and also with the classification of
multidimensional partial differential operators.

In two-dimensional bounded multiply connected domains a complete theory of a
class of singular integral equations is formulated in this book. This theory allows us
to find thin properties of this kind of singular integral equations which differs from
the one-dimensional case.

As it is known the Dirichlet problem is the simplest boundary-value problem,
which is well posed for scalar elliptic equations, and for general scalar elliptic
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equations this problem has zero index, i.e. has the Fredholm property. On the other
hand there are second-order elliptic equations with complex coefficients for which
the Dirichlet problem is ill posed in some domain. This means that for general elliptic
systems the Dirichlet problem is not natural - only so-called strongly elliptic systems.
Connecting with this is the problem of finding the formulation of well-posed
problems for elliptic systems that are not necessarily strongly elliptic. This is
important also in the sense that the set of general elliptic systems is more powerful
compared with the set strongly elliptic ones. In Chapter 3 we state and study the new
boundary-value problems for general elliptic systems which seem to be natural in the
sense that they are well posed and for multiply connected domains satisfy the
Fredholm property, i.e. have zero index.

In Chapter 4 we state and study initial- and initial-boundary-value problems for
nonstationary systems of equations, including systems of composite type. Initial-
boundary-value problems reduce to spectral theory for elliptic (not necessarily
strongly elliptic) systems of partial differential equations in the case of two-
dimensional space variables. All these considerations are based on the theory of
singular integral equations over a bounded plane domain.

In concluding Chapter 5 we extend some results of the preceding chapters to the
multidimensional case. Unfortunately the singular integral equations method is not
used in this chapter, but some connections with generalizations of the Cauchy-
Riemann equation allows us to consider some remarkable elliptic multidimensional
operators, and to state and study well-posed boundary-value problems for them, as
well as initial-boundary-value problems for nonclassical nonstationary systems
generated by them.



Preface to English edition

In this English edition some changes have been made to the original book. In Chapter
1, Sections 11 and 12 are combined as Section 11. In Chapter 2, Section 7 is new. In
Chapter 3, Section 2, the formulation of solvability theory of the Dirichlet problem is
given in terms of the newly introduced adjoint Dirichlet problem, and in Section 4 the
proofs of solvability theory for the A-problem are essentially improved. Chapter 4
has been deleted. In Chapter 5, Sections 6-8, 11 and 12 are exchanged for new
material expounded in Sections 6-8.
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K(z,0)
P(x,D)

n-dimensional Euclidean space of points x = (X{,....x,), ¥ = (Vgses¥p)s
E-l = (§1"‘*’E.m)’ n= (Tlpo-n'ﬂ,,)

complex plane of the variable z =x+1iy

complex conjugated pointin €

the space of functions that are continuous and possess derivatives of order
k

the space of infinitely differentiable functions

the space of compactly supported infinitely differentiable functions
the Bergman space of analytic functionsin G

the space of polyanalytic functionsin G

the space of generalized analytic functions
the space of Sobolev

the Hilbert transformation

the M. Riesz transformation

two-dimensional Hilbert transformation in C
two-dimensional Hilbert transformation on bounded domain G

the kernel function of the domain

linear differential operator of the order m

P*(x,D) = ; 1)l DS(a,()-) the operator adjoint to P(x, D)
Isi<m
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1
Integral representations of
functions

This chapter is of an auxiliary character. The necessary information from the theory
of one-dimensional singular integral equations, boundary-value problems of analytic
and generalized analytic theory of functions is introduced. The classes of the
functions satisfying some boundary conditions and an integral representation for them
are considered, and these tools are used in later chapters.

1. Hilbert transformations
A. Singular operators in Euclidean space

(1) The simplest example of the singular integral is the Hilbert transformation of the
function f(x) given on the real axis

[ fo
| E (1.1)

oo}

Since J | x| =1 dx = oo, it follows that integral (1.1) is not absolutely convergent as
-0

a usual improper integral, therefore there is not a defined bounded map anywhere in
L,(-00, 00) or L, (-0, 00), butif f(x) has compact support, for example, then (1.1)
may be interpreted by means of a special passing to the limit (Cauchy principal
value):

ff@&_hm{]+fywﬂ

1
L. §-x e-0 -

One of the remarkable proper;ties of the integral (1.1) is that it determines a bounded
operator in the space L p(—oo, ) with 1 <p<oo, ie. if f(x)€ Lp(—oo, o) then there
exists such a constant A p such that

WHel <A, ISl 1<p<o (1.2)

This inequality, which called the M. Riesz inequality, formed the basis of a
multidimensional generalization called the Calderon-Zygmund inequality.
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To prove (1.2) the operator (1.1) could be considered on a set of trial functions

c}’,° which are dense in L, and then extend continuously to the whole of L > Though
the proof of (1.2) given by M. Rieszis elegant we expound here another no less

elegant but more simple proof due to Zygmund (1935). Thus let f(x) € C8° (00, 00)
and p >2. Consider the Cauchy integral (z = x+1i y)

1T e
F(z)-u+1v.-n_a[ gm0

Since Im F(z) is Poisson's integral

T (z) = 2 J f€)dg
T
o o)y’

then v(x) = ImF (x) = f(x). On the other hand,

ey =ReF@ =1 [ 5% s
" G-x)"+y
1 }of(x+§) fa-)
T _» 2 2

L[ fard

T _

f&-8 1 [ fEE
E dé—n_;[ &=

If A is Laplace’s operator in variables x,y, then evidently from the harmonicity of
u, v and the Cauchy-Riemann equation we obtain, for p >2,

Al u|1’=p(p—1)|u|1"2(u§+ “3)’ AlvIP =pp-DIvIP-2(v+ vg),
AIFIP = p2 I F1P2 2+ ud).

Hence

p__P = p2 -2 _ -2y (12 4 12
A(IFI p_llulp—p (IF1P=2_1uP )(ux+uy)20.

Let Kp:lz|<R,y >0, the upper half of a disk with radius R with centre at the
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origin. If Cp is the boundary of Kp, then by Green's formula

HA(IFIP— P_|y1Pydxdy=- Ii(lmp-
-1 C, 9y

p |ulP)ds,
K, p R 1

p_

ie. j-a—(IFIP- P_|41P)ds<0
RB p-1

or, since |F|P - |ulP?-0 when R- oo, thenfor |z |- o

53_ al;(IFIP— 21 ulP)dx<0.

On the other hand the integral tends to zero when y - oo. It follows that for fixed
y >0 this integral is not negative:

(2]

J | F(x+iy)|Pdx2 Ilu(x+1y)lpdx

e p- 1 e
But
[+e}
2/p = || u2 + 2 2
(_ilFlde) P2 +321,<hul2,,+1v12
Therefore
D \2/p 2 2 2
(_p—l) Nl ,<hul2 41021,
and

ie.
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[>¢]
X 1 .
_a[lu(xﬂy)lpdxs———T . _a[)lv(x iy) | P dx.
p
p-1 -1

Hence (1.2) follows when y » 0 for p 22. If p <2 then taking into account the
fact that the adjoint operator H* to (1.1) coincides with -H and p’' = p(p-1) > 2,
we obtain the inequality (1.2) for the adjoint operator in L p- Whereas for functions
given on the real axis there exists a unique Hilbert transformation, for those given on
Euclidean space of dimension greater than one there exist uncountably many such
transformations.

(2) In order to get a direct generalization of the integral (1.1) we note that it can be
written as

where Hf = f Q@ x) ——Ff(®) dg
(1.19

1 . 1 x

Q = — B — 4

x) - sign x = T2l

Then it is clear that for the function f(x) on x = (x1, X9,...,X,) € R" we can determine
(see Riesz 1927; Stein 1970) n such transformations

Q(E-x
= [ 2570 e (13)
R 1E-xI"
where
n+1
F( 2 5o
Qj(x)= w i Tl j=1.2,..,n.
2

Integrals (1.3) like integrals (1.1") are characterized by the property that the €,(x) are
homogeneous odd functions of order zero. This makes it possible to prove an
inequality analogous to (1.2) for the integrals (1.3), provided the surface on the unit
spherein R” from Q(x) is bounded. But if the surface integral on the unit sphere in
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R” from Q(x) is equal to zero we may consider more general integrals in [R” than
(1.3):

J QE-x)
r* 1&- xI"

s FEN UG (1.4)

even in case when Q(x) is not odd
The important example of this kind of integral which arises in problems of partial
differential equations and will appear further in case n = 2 is

1 ﬂf(C)didT\

(1.5)
e €-2)

where € is the complex plane z = x +iy ({ = £ +in) which identified with R2.

The integral (1.5) has the form (1.4) with Q(z) = (z/1z1)2 an even function,and the

2n

surface integral from €(z) on the unit sphere in € is J e-210.d0 = 0.
0
If the surface integral on the unit sphere in R” is zero, then the integral of kind

(1.4) is called a singular integral operator of Calderon-Zygmund. (Note that this kind
of operator was investigated earlier by F. Tricomi 1926 and 1938 and S.G. Mihlin
1962.) As in the case of the Hilbert transformation these operators determine the
bounded map of the space to itself if, for 1 <p <o (e.if f(x)€ Lp(!R")), then
there exists a constant A, such that Calderon-Zygmund’s inequality

IKFI, < 4, If1,

holds for 1 < p <.

We expound the proof of this inequality only for the operator (1.5) given by I
Vekua [IId]. The proof for the general case there is in Calderon and Zygmund (1952;
1956) and also in Schwarz (1971).

As previously, we restrict ourselves to consider the taste functions C8° (C) which
is dense in L,(©).
Let

. d&dn i 1 dédn
ri= gz i+ o gt - tim ﬁc_ag(e)f(cﬂ) —

where the integral again is understanding in the sense of Cauchy's principal value.
Since the kernel of this integral passes the property of 'radial’ symmetry we pass to
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polar coordinates { = pei®. Then

T*f =

E 0 ) io
1 j 1 jf(2+pe )-f(z-pe ) dp | e do.
2 0 L& p

Hence

17 fGrpe®) £ Ga-pe’®
ax E(-)[ P

T
T*fl, < =
I fllp_zm 0

where

71, = iy 1P axay e,
C

If we substitute zel® for z, it is evident that the norm of the right-hand side is not
changed and we obtain

1T+, < gmax I Hfpll . fo(2) = £ (z¢19).

But by M. Riesz’s inequality (1.2),

oo}

|le01|§=,Ulhfo(u+iv)ll’dudvsAZ jdv Jlfo(u+iv)lpdu
C

-00 -00
<
< A10 I fo I ‘rf
Hence

1711, 5 24, £, (1.6)

Since fe CBO (C) then integrating by parts, we obtain

r@ = -3 i@+ 057 cem



