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Preface

A substantial growth of knowledge in the dynamics of ocean surface waves has
been witnessed over the past 20 years. While many advances have been
stimuldted by purely scientific inquiry in geophysics, the pac. of progress has
also been quickened by the increase in large engineering projects both offshore
and along the coast. A major construction project now demands not only
careful estimates of wave conditions near the site but also reliable predictions
of the effects on and of the construction itself. With a view to bringing together
scientific and engineering aspects of ocean waves, educational and research
programs have naturally been established in a number of universities and
" industries. :

This book is the outgrowth of my lecture notes for a two-semester course
taught at M.L.T. since 1974 to graduate students in civil and ocean engineering,
with occasional participants from physical oceanography. The aim of the book
is to present selected theoretical topics on ocean-wave dynamics, including
basic principles and applications in coastal and offshore engineering, all from
the deterministic point of view. The bulk of the material deals with the
linearized theory which has been well developed in the research literature. The
inviscid linearized theory is covered in Chapters One to Five and again in
Seven. Frictional effects caused directly or indirectly by viscosity are treated in
Chapters Six, Eight, and Nine. A special effect of breaking waves on beaches is

“examined in Chapter Ten. Chapters Nine and Ten -focus on the secondary
effects of nonlinearity. The cases where nonlinearity is of primary importance
are the subjects of Chapters Eleven and Twelve, for shallow and deep waters,
respectively. The last chapter (Thirteen) is on wave-induced stresses in a
porous but deformable seabed, which.is a problem vital to offshore engineer-
ing. In the construction of a gravity platform, the cost of the foundation alone
can be as high as 40% of the total. Under the influence of waves, the strength
of a porous seabed is affected to varying degrees by fluid in the pores. Hence
hydrodynamics is an essential part of the problem. In this chapter a well-known
fluid-dynamic reasoning is applied to a soil model which includes fluid and
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viii PREFACE

solid phases. I hope the material will stimulate further interaction among
researchers in different disciplines.

Most parts of this book have been used either for my own lectures or for
self-paced reading by the students. Since contributions by mathematical scien-,
tists have always been prominent in this field, the use of certain analytical
techniques which may be less familiar to many potential readers cannot be
avoided. Therefore, considerable space is devoted to the informal explanation
and demonstration of those techniques not customarily discussed in a course
on advanced calculus. The derivations of most of the results are given in detail
in order to reduce possible frustrations to those who are still acquiring the
requi'site skills. A few exercises are included; nearly all of them demand some
effort. For additional exercises, I have usually suggested term papers based on
the student’s own survey of literature.

Studies on waves in general, and on water waves in particular, have always
been enriched by cross fertilization among diverse fields of science and
engineering, including physics, mathematics, oceanography, electrical engineer-
ing, and others. A conscientious effort has been made in this book to reflect
this ract which I hope will induce more engineers and scientists to Jom their
talents for further challenges of the sea.

Several important areas which are either beyond my own experience or have
been treated in other books are not included here. The mechanisms of wave
generation by wind and many aspects of resonant interactions have been
admirably surveyed by Phillips (1977) and by LeBlond and Mysak (1978). On
the statistical description of random sea waves, a detailed discussion of the
basic aspects may be found in Price and Bishop (1974). For the statistical
mechanics of sea. waves one should consult Phillips (1977) and West (1981).
The rapid advance on steep waves, spearheaded by M. S. Longuet-Higgins, is
of obvious interest to engineers and oceanographers alike; the numerous
papers by him and his associates on the subject cannot be matched for clarity
and thoroughness. Waves due to advancing bodies belong to the realm of ship
hydrodynamics; the definitive treatises by Stoker (1957), Wehausen and
Laitone (1960), and Newman (1977), and all the past proceedings of the Naval
Hydrodynamics Symposium should be consulted. Wave-induced separation
around small bodies is at the heart of force prediction for offshore structures;
it is a subject where experiments play the leading role and has been expertly
covered in a recent book by Sarpkaya and Issacson (1981). Storm surges are
also omiited.

In a book containing many mathematical expressions, freedom from error
caz: be strived for but is hard to achieve. I shall be grateful to readers who wish
to inform me of any oversights that remain.

CHIANG C. MEI

Cambridge, Massachusetts
July 1982
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ONE

Introduction

Many types of waves involving different physical factors exist in the ocean. As
in the elementary problem of a spring-mass system, all waves must be
associated with some kind of restoring force. It is therefore convenient to make
a crude classification of ocean waves according to the restoring force, as shown
in Table 1.1.

Wind waves and swell, generated by local and distant storms are the most
directly experienced by mankind. Occurring less frequently but with occasion-
ally disastrous consequences are the tsunamis which usually refer to long-period
[~ O(1 h)] oscillations caused by large submarine earthquakes or landslides.
Within the same broad range of time scales, waves can also exist as a result of
human activities (ship motion, explosion, and so on). Since these waves are the
most prominent on the water surface and their main restoring force is gravity,
they are called the surface gravity waves. The shorter term, surface waves, is
often used if the exclusion of surface capillary waves is understood.

Important in the science of oceanography are the internal gravity waves
along the thermoclines which are horizontal layers of sharp density stratifica-
tion beneath the sea surface. The associated wave motion is generally not
pronounced on the surface except for some indirect signs of its presence. These
waves contribute to the process of mixing and affect the eddy viscosity of
ocean currents. Storm surges are the immediate consequence of local weather
and can inflict severe damages to human life and properties by innundating the
coast. :

In nature, several restoring forces can be in effect at the same time, hence:
the distinction between various waves listed in Table 1.1 is not always very
sharp.

This book will be limited to wave motions having time scales such that
compressibility and surface tension at one extreme and earth rotation at the
other are of little direct importance. Furthermore, the vertical stratification of
sea water is assumed to be small enough within the depth of interest. There-
fore, we shall only be concerned with the surface gravity waves, that is, wind
waves, swell, and tsunamis. Discussions of all other waves listed.in Table 1.1



2 INTRODUCTION

Table 1.1 Wave Type, Physical Mechanism, Activity Region.

Wave Type  Physical Mechanism Typical Period“ Region of Activity

Sound Compressibility 1072-107° s Ocean interior
Capillary Surface tension <107
ripples
Wind waves Gravity 1-25s Air-water interface
and swell
Tsunami Gravity 10 min-2 h .
Internal Gravity and denmy 2min-10h Layer of sharp density
waves stratification change
Storm surges Gravity and 1-10h Near coastline
Earth rotation
Tides Gravity and 12-24h )
Earth rotation )
Planetary Gravity, Earth O(100 days)
waves rotation and . \_Entire ocean layer
variation of )
latitude or ocean
depth )

“In seconds (s), minutes (min), hours (h), and days.

can be found in the oceanographic treatises by Hill (1962) and LcBlond and
Mysak (1978).

In this chapter we first review the basm equauons of fluid mouon and some
general deductions for inviscid, urotatxona‘l flows. Lmeanzpd equations for
infinitesimal waves are then derived. After mtroducmg the general notions of
propagating waves, we examine the properties of simple harmonic progressive
waves on constant depth. An elementary discussion of group velocity will be
given from both kmematlc and dynamlc points of view.

L1 REVIEW OF BASIC FORMULATION FOR AN INCOMPRESSIBLE
FLUID OF CONSTANT DENSlTY '

1.1.1 Governing Equations.

In a wide variety of gravity wave problems, the variation of water density is
ihsignificant over the temporal and _spatial scales of engineering interest. The
fundamental conservation .laws are adequately described by the followmg
Navier-Stokes equations:

mass: v-ou=0, | (L)

'niomepium: (%+u-v’)u=—v(§+gz)+vv,2u, (1.2)

e



