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Preface

Physical theories allow us to make predictions: given a complete description of a physical
system, we can predict the outcome of some measurements. This problem of predicting
the result of measurements is called the modelization problem, the simulation problem,
or the forward problem. The inverse problem consists of using the actual result of some
measurements to infer the values of the parameters that characterize the system.

While the forward problem has (in deterministic physics) a unique solution, the inverse
problem does not. As an example, consider measurements of the gravity field around a
planet: given the distribution of mass inside the planet, we can uniquely predict the values
of the gravity field around the planet (forward problem), but there are different distributions
of mass that give exactly the same gravity field in the space outside the planet. Therefore,
the inverse problem — of inferring the mass distribution from observations of the gravity
field — has multiple solutions (in fact, an infinite number).

Because of this, in the inverse problem, one needs to make explicit any available a priori
information on the model parameters. One also needs to be careful in the representation of
the data uncertainties.

The most general (and simple) theory is obtained when using a probabilistic point of
view, where the a priori information on the model parameters is represented by a probability
distribution over the ‘model space.” The theory developed here explains how this a priori
probability distribution is transformed into the a posteriori probability distribution, by incor-
porating a physical theory (relating the model parameters to some observable parameters)
and the actual result of the observations (with their uncertainties).

To develop the theory, we shall need to examine the different types of parameters that
appear in physics and to be able to understand what a total absence of a priori information
on a given parameter may mean.

Although the notion of the inverse problem could be based on conditional probabilities
and Bayes’s theorem, I choose to introduce a more general notion, that of the ‘combination
of states of information,’ that is, in principle, free from the special difficulties appearing in
the use of conditional probability densities (like the well-known Borel paradox).

The general theory has a simple (probabilistic) formulation and applies to any kind of
inverse problem, including linear as well as strongly nonlinear problems. Except for very
simple examples, the probabilistic formulation of the inverse problem requires a resolution
in terms of ‘samples’ of the a posteriori probability distribution in the model space. This,
in particular, means that the solution of an inverse problem is not a model but a collection
of models (that are consistent with both the data and the a priori information). This is

Xi



xii Preface

why Monte Carlo (i.e., random) techniques are examined in this text. With the increasing
availability of computer power, Monte Carlo techniques are being increasingly used.

Some special problems, where nonlinearities are weak, can be solved using special,
very efficient techniques that do not differ essentially from those used, for instance, by
Laplace in 1799, who introduced the ‘least-absolute-values’ and the ‘minimax’ criteria for
obtaining the best solution, or by Legendre in 1801 and Gauss in 1809, who introduced the
‘least-squares’ criterion.

The first part of this book deals exclusively with discrete inverse problems with a
finite number of parameters. Some real problems are naturally discrete, while others contain
functions of a continuous variable and can be discretized if the functions under consideration
are smooth enough compared to the sampling length, or if the functions can conveniently be
described by their development on a truncated basis. The advantage of a discretized point of
view for problems involving functions is that the mathematics is easier. The disadvantage is
that some simplifications arising in a general approach can be hidden when using a discrete
formulation. (Discretizing the forward problem and setting a discrete inverse problem is
not always equivalent to setting a general inverse problem and discretizing for the practical
computations.)

The second part of the book deals with general inverse problems, which may contain
such functions as data or unknowns. As this general approach contains the discrete case in
particular, the separation into two parts corresponds only to a didactical purpose.

Although this book contains a lot of mathematics, it is not a mathematical book. It
tries to explain how a method of acquisition of information can be applied to the actual
world, and many of the arguments are heuristic.

This book is an entirely rewritten version of a book I published long ago (Tarantola,
1987). Developments in inverse theory in recent years suggest that a new text be proposed,
but that it should be organized in essentially the same way as my previous book. In this new
version, I have clarified some notions, have underplayed the role of optimization techniques,
and have taken Monte Carlo methods much more seriously.

I am very indebted to my colleagues (Bartolomé Coll, Georges Jobert, Klaus
Mosegaard, Miguel Bosch, Guillaume Evrard, John Scales, Christophe Barnes, Frédéric
Parrenin, and Bernard Valette) for illuminating discussions. I am also grateful to my col-
laborators at what was the Tomography Group at the Institut de Physique du Globe de
Paris.

Albert Tarantola
Paris, June 2004
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Chapter 1

The General Discrete
Inverse Problem

Far better an approximate answer to the right question,
which is often vague,

than an exact answer to the wrong question,

which can always be made precise.

John W. Tukey, 1962

Central to this chapter is the concept of the ‘state of information’ over a parameter
set. It is postulated that the most general way to describe such a state of information
is to define a probability density over the parameter space. It follows that the results of
the measurements of the observable parameters (data), the a priori information on model
parameters, and the information on the physical correlations between observable parameters
and model parameters can all be described using probability densities. The general inverse
problem can then be set as a problem of ‘combining’ all of this information. Using the point
of view developed here, the solution of inverse problems, and the analysis of uncertainty
(sometimes called ‘error and resolution analysis’), can be performed in a fully nonlinear
way (but perhaps with a large amount of computing time). In all usual cases, the results
obtained with this method reduce to those obtained from more conventional approaches.

1.1 Model Space and Data Space

Let & be the physical system under study. For instance, &G can be a galaxy for an astro-
physicist, Earth for a geophysicist, or a quantum particle for a quantum physicist.

The scientific procedure for the study of a physical system can be (rather arbitrarily)
divided into the following three steps.

i) Parameterization of the system: discovery of a minimal set of model parameters
whose values completely characterize the system (from a given point of view).
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ii) Forward modeling: discovery of the physical laws allowing us, for given values of
the model parameters, to make predictions on the results of measurements on some
observable parameters.

ili) Inverse modeling: use of the actual results of some measurements of the observable
parameters to infer the actual values of the model parameters.

Strong feedback exists between these steps, and a dramatic advance in one of them
is usually followed by advances in the other two. While the first two steps are mainly
inductive, the third step is deductive. This means that the rules of thinking that we follow
in the first two steps are difficult to make explicit. On the contrary, the mathematical theory
of logic (completed with probability theory) seems to apply quite well to the third step, to
which this book is devoted.

1.1.1 Model Space

The choice of the model parameters to be used to describe a system is generally not unique.

Example 1.1. An anisotropic elastic sample & is analyzed in the laboratory. To describe
its elastic properties, it is possible 1o use the tensor ¢J4(X) of elastic stiffnesses relating
stress, o'/ (x), to strain, £ (x), at each point x of the solid:

o/ (x) = cUpx)e¥(x) . (1.1)

Alternatively, it is possible to use the tensor s'/(X) of elastic compliances relating strain
to stress,

g9(x) = sYpx) X x) (1.2)

where the tensor s is the inverse of ¢, c'/y,s*¢,,, = 85 8). The use of stiffnesses or of
compliances is completely equivalent, and there is no ‘natural’ choice.

A particular choice of model parameters is a parameterization of the system. Two
different parameterizations are equivalent if they are related by a bijection (one-to-one
mapping).

Independently of any particular parameterization, it is possible to introduce an abstract
space of points, a manifold,' each point of which represents a conceivable model of the
system. This manifold is named the model space and is denoted 9. Individual models are
points of the model space manifold and could be denoted M;, M, , ... (but we shall use
another, more common, notation).

For quantitative discussions on the system, a particular parameterization has to be
chosen. To define a parameterization means to define a set of experimental procedures
allowing, at least in principle, us to measure a set of physical quantities that characterize
the system. Once a particular parameterization has been chosen, with each point M of the

I'The reader interested in the theory of differentiable manifolds may refer, for instance, to Lang (1962),
Narasimhan (1968), or Boothby (1975).
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model space M a set of numerical values {m!, ..., m"} is associated. This corresponds
to the definition of a system of coordinates over the model manifold 9t .

Example 1.2. If the elastic sample mentioned in Example 1.1 is, in fact, isotropic and ho-
mogeneous, the model manifold 9 is two-dimensional (as such a medium is characterized
by two elastic constants). As parameters to characterize the sample, one may choose, for
instance, {m',m?} = { Young modulus, Poisson ratio} or {m!, m?} = {bulk modulus ,
shear modulus }. These two possible choices define two different coordinate systems over
the model manifold 9N .

Each point M of 9 is named a model, and, to conform to usual notation, we may
represent it using the symbol m. By no means is m to be understood as a vector, i.e., as
an element of a linear space. For the manifold 91 may be linear or not, and even when
the model space 21 is linear, the coordinates being used may not be a set of Cartesian
coordinates.

Example 1.3. Let us choose to characterize the elastic samples mentioned in Example 1.2
using the bulk modulus and the shear modulus, {m', m*} = {«, u}. A convenient® definition
of the distance between two elastic media is

d = ‘ﬂlog :—?)2+(logf)2 . (1.3)

This clearly shows that the two coordinates {m', m*} = {k, u} are not Cartesian. Intro-
ducing the logarithmic bulk modulus «* = log(x /xy) and the logarithmic shear modulus
w” =log(u/ o) (where kg and gy are arbitrary constants) gives

d= /6D + g —u)? . (1.4)

The logarithmic bulk modulus and the logarithmic shear modulus are Cartesian coordinates
over the model manifold .

The number of model parameters needed to completely describe a system may be
either finite or infinite. This number is infinite, for instance, when we are interested in a
property {m(x); x € V} that depends on the position x inside some volume V.

The theory of infinite-dimensional manifolds needs a greater technical vocabulary
than the theory of finite-dimensional manifolds. In what follows, and in all of the first
part of this book, I assume that the model space is finite dimensional. This limitation to
systems with a finite number of parameters may be severe from a mathematical point of
view. For instance, passing from a continuous field m(x) to a discrete set of quantities
m® = m(x*) by discretizing the space will only make sense if the considered fields are
smooth. If this is indeed the case, then there will be no practical difference between the
numerical results given by functional approaches and those given by discrete approaches to

2This definition of distance is invariant of form when changing these positive elastic parameters by their inverses,
or when multiplying the values of the elastic parameters by a constant. See Appendix 6.3 for details.
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inverse problem theory (although the numerical algorithms may differ considerably, as can
be seen by comparing the continuous formulation in sections 5.6 and 5.7 and the discrete
formulation in Problem 7.3).

Once we agree, in the first part of this book. to deal only with a finite number of
parameters, it remains to decide if the parameters may take continuous or discrete values
(i.e., in fact, if the quantities are real numbers or integer numbers). For instance, if a
parameter /m® represents the mass of the Sun. we can assume that it can take any value
from zero to infinity: if m“ represents the spin of a quantum particle, we can assume a priosi
that it can only take discrete values. As the use of ‘deita functions’ allows us to consider
parameters taking discrete values as a special case of parameters taking continuous values.
we shall, to simplify the discussion, use the terminology corresponding to the assumption
that all the parameters under consideration take their values in a continuous set. If this is not
the case in a particular problem, the reader will easily make the corresponding modifications.

When a particular parameterization of the system has been chosen. each point of 9
(i.e.. each model) can be represented by a particular set of values for the model parameters
m = {m“}, where the index « belongs to some discrete finite index set. As we have
interpreted any particular parameterization of the physical system & as a choice of coor-
dinates over the manifold 1, the variables m“ can be named the coordinates of m . but
not the ‘components’ of m, unless a linear space can be introduced. But, more often than
not, the model space is not linear. For instance, when trying to estimate the geographical
coordinates {f. ¢} of the (center of the) meteoritic impact that killed the dinosaurs. the
model space 91 is the surface of Earth, which is intrinsically curved.

When it can be demonstrated that the model manifold 91 has no curvature, to intro-
duce a linear (vector) space still requires a proper definition of the ‘components’ of vectors.
When such a structure of linear space has been introduced, then we can talk about the linear
model space, denoted M, and, by definition, the sum of nwo models, m, and m- , corre-
sponds to the sum of their components. and the multiplication of a model by a real number
corresponds to the multiplication of all its components:”

(m; + m>)* = m“ + mY . (Am)* = xm* . (1.5)

Example 1.4. Forinstance, inthe elastic solid considered in Example 1.3, 10 have a structure

of linear (vector) space, one must select an arbitrary point of the manifold {xq. 11y} and
. ol

define the vector m = {m', m’} whose COmMpOnents are

m' = log(x/ky) . m* = log(u/mn) . (1.6)

Then, the distance between rwo models, as defined in Example 1.3, equals || my — my ||,
the norm here being understood in its ordinary sense (for vectors in a Euclidean space).

One must keep in mind, however, that the basic definitions of the theory developed
here will not depend in any way on the assumption of the linearity of the model space. We
are about to see that the only mathematical objects to be defined in order 1o deal with the most
general formulation of inverse problems are probability distributions over the model space

3The index o in equation (1.5) may just be a shorthand notation for a multidimensional index (see an example
in Problem 7.3). For details of array algebra see Snay (1978) or Rauhala (2002).
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manifold. A probability over 91 is a mapping that, with any subset A of 90, associates
a nonnegative real number, P(A4), named the probability of 4, with P(9M) = I. Such
probability distributions can be defined over any finite-dimensional manifold 9% (curved
or linear) and irrespective of any particular parameterization of 9, i.c., independently of
any particular choice of coordinates. But if a particular coordinate system {m®} has been
chosen, it is then possible to describe a probability distribution using a probability density
(and we will make extensive use of this possibility).

1.1.2 Data Space

To obtain information on model parameters, we have to perform some observations dur-
ing a physical experiment, i.e., we have to perform a measurement of some observable
parameters.*

Example 1.5. For a nuclear physicist interested in the structure of an atomic particle,
observations may consist in a measurement of the flux of particles diffused at different
angles for a given incident particle flux, while for a geophysicist interested in understanding
Earth’s deep structure, observations may consist in recording a set of seismograms at
Earth’s surface.

We can thus arrive at the abstract idea of a data space, which can be defined as the
space of all conceivable instrumental responses. This corresponds to another manifold, the
data manifold (or data space), which we may represent by the symbol © . Any conceiv-
able (exact) result of the measurements then corresponds to a particular point D on the
manifold D .

As was the case with the model manifold, it shall sometimes be possible to endow the
data space with the structure of a linear manifold. When this is the case, then we can talk
about the linear data space, denoted by D ; the coordinates d = {d'} (where i belongs
to some discrete and finite index set) are then components,® and, as usual,

(d+dy) =d+d)f , (rd) = rd" . (1.7

Each possible realization of d is then named a data vector.

1.1.3 Joint Manifold

The separation suggested above between the model parameters {m®} and the data parame-
ters {d'} is sometimes clear-cut. In other circumstances, this may require some argumen-
tation, or may not even be desirable. It is then possible to introduce one single manifold
X that represents all the parameters of the problem. A point of the manifold ¥ can be
represented by the symbol X and a system of coordinates by {x4}.

4The task of experimenters is difficult not only because they have to perform measurements as accurately
as possible, but, more essentially, because they have to imagine new experimental procedures allowing them to
measure observable parameters that carry a maximum of information on the model parameters.

3 As mentioned above for the model space, the index i here may just be a shorthand rotation for a multidimen-
sional index (see an example in Problem 7.3).
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As the quantities {d'} were termed observable parameters and the quantities {m®}
were termed model parameters, we can call {x*} the physical parameters or simply the
parameters. The manifold X is then named the parameter manifold .

1.2 States of Information

The probability theory developed here is self-sufficient. For good textbooks with some
points in common with the present text, see Jeffreys (1939) and Jaynes (2003).

1.2.1 Definition of Probability

We are going to work with a finite-dimensional manifold X (for instance, the model or
the data space) and the field of all its subsets A, B, ... . These subsets can be individual
points, disjoint collections of points, or contiguous collections of points (whole regions of
the manifold X ). As is traditional in probability theory, a subset A C X 1s called an event.
The union and the intersection of two events A and B are respectively denoted AUB and
ANEB.

The field ot events is called. in technical terms, a o -field, meaning that the complement
of an event is also an event. The notion of a o-field could allow us to introduce probability
theory with great generality, but we limit ourselves here to probabilities defined over a
finite-dimensional manifold.

By definition, a measure over the manifold X is an application P(-) that with any
event A of X associates a real positive number P (.A), named the measure of A, that
satisfies the following two properties (Kolmogorov axioms):

* If A and B are two disjoint events, then

PAUB) = P(AY+ P(B) . (1.8)

» There is continuity at zero, i.e..if asequence A; 2 A; 2 -+ tends to the empty set,
then P(A;) — 0.

This last condition implies that the probability of the empty event is zero,
P(Y) =0 , (1.9)

and it immediately follows from condition (1.8) that if the two events A and B are not
necessarily disjoint, then

P(AUB) = P(A)+ P(B)— P(ANB) . (1.10)

The probability of the whole manifold, P(X), is not necessarily finite. If it is, then P
is termed a probabilitv over X . Inthat case, P is usually normalized to unity: P(X) =1.
In what follows, the term ‘probability’ will be reserved for a value, like P(A) for the
probability of A . The function P(-) itself will rather be called a probability distribution.

An important notion is that of a sample of a distribution, so let us give its formal
definition. A randomly generated point P € X is a sample of a probability distribution
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P(-) if the probability that the point P is generated inside any .4 C X equals P(.A), the
probability of A. Two points P and Q are independent samples if (i) both are samples and
(ii) the generation of the samples is independent (i.e., if the actual place where each point
has materialized is, by construction, independent of the actual place where the other point
has materialized).%

Let P be a probability distribution over a manifold X and assume that a particular
coordinate system x = {x', x2,...} has been chosen over X. For any probability distri-
bution P, there exists (Radon—-Nikodym theorem) a positive function f(x) such that, for
any A € X, P(A) can be obtained as the integral

P(A) = /dxf(x) , (LD
A

where

/dx = /a’x'/dxzn- . (1.12)
A

over A

Then, f(x) is termed the probability density representing P (with respect to the given
coordinate system). The functions representing probability densities may, in fact, be distri-
butions, i.e., generalized functions containing in particular Dirac’s delta function.

Example 1.6. Let X be the 2D surface of the sphere endowed with a system of spherical
coordinates {6, ¢}. The probability density

sin @

f,9) = — (1.13)

4n
associates with every region A of X a probability that is proportional to the surface of A.
Therefore, the probability density f(8, ) is ‘homogeneous’ (although the function does
not take constant values).

Example 1.7. Let X = R* be the positive part of the real line, and let f (x) be the function
1/x. The integral P(x; < x < x3) = f):2 dx f(x) then defines a measure over X, but
not a probability (because P(0 < x < 00) = 00). The function f(x) is then a measure
density but not a probability density.

To develop our theory, we will effectively need to consider nonnormalizable measures
(i.e., measures that are not a probability). These measures cannot describe the probability
of a given event A : they can only describe the relative probability of two events A, and
A; . We will see that this is sufficient for our needs. To simplify the discussion, we will
sometimes use the linguistic abuse of calling probability a nonnormalizable measure.

It should be noticed that, as a probability is a real number, and as the parameters
x!,x2,... in general have physical dimensions, the physical dimension of a probability

SMany of the algorithms used to generate samples in large-dimensional spaces (like the Gibbs sampler of the
Metropolis algorithm) do not provide independent samples.



