O’REILLY"
% &%k "?’ i Rk £t Elliotte Rusty Harold %

oy
Bl
asir
w
«
&
3
¥
4
A
45
E.a
B 4]
2
=
P

FB=IR

Java" M 4RIz (3 E0iR)

Java"Network Programming

5 L # RN
B

O’REILLY"

Beijing « Cambridge » Farnham « Kéln < Paris « Sebastopol * Taipei Tokyo

O'Reilly Media, Inc. 8 LA d X % & B4t & R

FRXFEHMRH

EBERSRE (CIP) 8iE

Java™ W48 B3Rk / (¥) 2P (Harold, R.E.)
F—RHR . — s REgKFHREE, 2005.6

$4 53 Java™Network Programming, Third Edition

ISBN 7-5641-0042-7

I.J. OM. MJAVAIEE -BFXI -3
IV.TP312

W B R A B 518 CIP B (2005) 35 047644 5

T AR SR A R
E=: 10-2005-081 5

©2004 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press, 2005.
Authorized reprint of the original English edition, 2004 O'Reilly Media, Inc., the owner of all rights to publish
and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% X R M iy O'Reilly Media, Inc. & §& 2004,

R XBPIRG A& d K F B RAL IR 2005, M PRR S kR4 B A 2 R A4 B AR K FT A A —— O'Reilly
Media, Inc.#5# 7T,

MAFRAE, ABFBRHT, KBHETRI P LR R UETH XE4.

H &/ Java™HRKERE (FEIR)

4 2/ ISBN 7-5641-0042-7/TP - 3

e/ Kk

#HMi%it/ Emma Colby, #fit

HAREFT/ ZREEKFHRH

o b/ FEESRDUMRBE2S HR4E 210096

B R/ B WEIRIARAE

F A/ 78Tk x 10922k 16 A 47.75EN%k
B k/ 20054E6 A% 1R 200546 A% 1 KRENR
El %/ 0001-2000 fi}

E t/ 98.005T (i)

O’Reilly Media, Inc. 428

O’Reilly Media, Inc. £1ttF F 78 UNIX.X.Internet I3 JF 3 5 45 B+ 45 80 2L A 40
AL B H AR A R B R BRL R SR

ME %44 The Whole Internet User’s Guide & Catalog (41 41 /0 £ 8 $5481F 3% 20
HEAREREMN 50 FH2Z—) 8 GNNGEE B Internet [T FI#G Ak M ¥ , 3] WebSite (45
— A8l PC) Web iR & 2888/4) , O'Reilly Media, Inc. —FAbF Internet % JBAIBBIHL .

WEBIEMRBEH,O'Reilly Media, Inc. EBEBEMIHENEBHER —=8—%
BRW—EFEMR . 5AZHETEYLE S SR H O'Reilly Media, Inc. B4 FERHHE
Al H R, X8 OReilly Media, Inc. JE BT — 436 % 7 R T H At AR 8 649 187 4t .
O'Reilly Media, Inc. i HEMHEBARUMBREBFRA. R ERTRENERE R,
O'Reilly Media, Inc. #H #ZEEMEERE — MNEASFEHXTARNERER .G
WERK, MHAERE EE, O'Reilly Media, Inc. KM KBS #E B H. HK O'Reilly
Media, Inc. B##i 5t B P R K R F, Bl O'Reilly Media, Inc. AE#iH L AFEE
a4,

H AR5 BA

BE T ENER YRR ZNA AREEL AN EARARERROFN Y. TH
PERKRBE AN T AT R EHMEHEFRERTERNR R, A, i+HE
VLT B AR SR BE 2 R B ARBT A A, 0 7 3 B B B AR A B 725 — B] T f 1 41
BEF A, R REH B FEE OReilly Media, Inc. 3% B YL ¥ RESE T # %A R 8
REBEMBEHEARBEEREIIEEABE N EE, LR RRE AT SURNER B RS
BE. Ko BHRBEARSESEBRE 7R B R RK RS IEE .

RATH WAL, Frol e BEEE X B A M XTI ERAR BBILB KPR AR
MEBRMANEINTAEERED . SERNTEIERORBEFRE# AR LHBEE
R HEERMEY

BRI 10 &, K Java, Unix/Linux, Python & %5 1 :

o (B Java) (BEEIRRD

» {Jakarta Commons 2 8832 Y (B2 EI iR

o (Weblogic B ERIERm YR EHR)

* (Java BISKHWEBE =M EBD

* {Linux FZWHEF FZWIEHKD
* (LPI Linux ATEABRIEEE V(B EIRRD)

* {GNU Make TN HE#E 5 =RIEHHO
s (FERARPRATEE)GEEB

o (%3] Python % _RRY(EER)

o OMBIENFAX B ZROGEEBD

To Grandmama, a great grandmother.

Preface

Java’s growth over the last 10 years has been nothing short of phenomenal. Given
Java’s rapid rise to prominence and the even more spectacular growth of the Inter-
net, it’s a little surprising that network programming in Java is still so mysterious to
so many. It doesn’t have to be. In fact, writing network programs in Java is quite sim-
ple, as this book will show. Readers with previous experience in network program-
ming in a Unix, Windows, or Macintosh environment should be pleasantly surprised
at how much easier it is to write equivalent programs in Java. The Java core API
includes well-designed interfaces to most network features. Indeed, there is very lit-
tle application-layer network software you can write in C or C++ that you can’t write
more easily in Java. Java Network Programming, 3rd Edition endeavors to show you
how to take advantage of Java’s network class library to quickly and easily write pro-
grams that accomplish many common networking tasks. Some of these include:

* Browsing the Web with HTTP

* Parsing and rendering HTML

* Sending email with SMTP

* Receiving email with POP and IMAP

* Writing multithreaded servers

* Installing new protocol and content handlers into browsers

* Encrypting communications for confidentiality, authentication, and guaranteed

message integrity

* Designing GUI clients for network services

* Posting data to server-side programs

* Looking up hosts using DNS

* Downloading files with anonymous FTP

* Connecting sockets for low-level network communication

* Distributing applications across multiple systems with Remote Method Invocation

xiii

Java is the first language to provide such a powerful cross-platform network library,
which handles all these diverse tasks. Java Network Programming exposes the power
and sophistication of this library. This book’s goal is to enable you to start using Java
as a platform for serious network programming. To do so, this book provides a gen-
eral background in network fundamentals, as well as detailed discussions of Java’s
facilities for writing network programs. You'll learn how to write Java programs that
share data across the Internet for games, collaboration, software updates, file trans-
fer, and more. You’ll also get a behind-the-scenes look at HTTP, SMTP, TCP/IP, and
the other protocols that support the Internet and the Web. When you finish this
book, you'll have the knowledge and the tools to create the next generation of soft-
ware that takes full advantage of the Internet.

About the Third Edition

In 1996, in the first chapter of the first edition of this book, I wrote extensively about
the sort of dynamic, distributed network applications I thought Java would make
possible. One of the most exciting parts of writing subsequent editions has been see-
ing virtually all of the applications I foretold come to pass. Programmers are using
Java to query database servers, monitor web pages, control telescopes, manage mul-
tiplayer games, and more, all by using Java’s native ability to access the Internet. Java
in general and network programming in Java in particular has moved well beyond
the hype stage and into the realm of real, working applications. Not all network soft-
ware is yet written in Java, but it’s not for a lack of trying. Efforts are well under way
to subvert the existing infrastructure of C-based network clients and servers with
pure Java replacements. Clients for newer protocols like Gnutella and Freenet are
preferentially written in Java. It’s unlikely that Java will replace C for all network
programming in the near future. However, the mere fact that many people are will-
ing to use web browsers, web servers, and more written in Java shows just how far
we’ve come since 1996.

This book has come a long way, too. The third edition has one completely new chap-
ter to describe the most significant development in network programming since read-
ers and writers were introduced in Java 1.1. I refer of course to the new /O APIs in
the java.nio package. The ability to perform asynchronous, non-blocking I/O opera-
tions is critical for high-performance network applications, especially servers. It
removes one of the last barriers to using Java for network servers. Many other chap-
ters have been updated to take advantage of these new I/O APIs.

There’ve been lots of other small changes and updates throughout the java.net and
supporting packages in Java 1.4 and 1.5, and these are covered here as well. New
classes addressed in this edition include CookieHandler, SocketAddress, Proxy,
NetworkInterface, and URI. IPv6 has become a reality, and is now covered exten-
sively. Many other methods have been added to existing classes in the last two

xiv | Preface

releases of Java, and these are discussed in the relevant chapters. I've also rewritten
large parts of the book to reflect changing fashions in Java programming in general
and network programming in particular. Applets and CGI programs are emphasized
much less. In their place, you’ll find more generic discussion of remote code execu-
tion and server-side environments, however implemented.

Of course, the text has been cleaned up, too. There’s only one completely new chap-
ter here, but the 18 existing chapters have been extensively rewritten and expanded
to bring them up-to-date with new developments as well as to make them clearer and
more engaging. I hope you’ll find this third edition an even stronger, longer-lived,
more accurate, and more enjoyable tutorial and reference to network programming
in Java than the last edition.

Organization of the Book

This book begins with three chapters that outline how networks and network pro-
grams work. Chapter 1, Why Networked Java?, is a gentle introduction to network
programming in Java and the applications it makes possible. All readers should find
something of interest in this chapter. It explores some of the unique programs that
become feasible when networking is combined with Java. Chapter 2, Basic Network
Concepts, and Chapter 3, Basic Web Concepts, explain in detail what a programmer
needs to know about how the Internet and the Web work. Chapter 2 describes the
protocols that underlie the Internet, such as TCP/IP and UDP/IP. Chapter 3
describes the standards that underlie the Web, such as HTTP, HTML, and REST. If
you've done a lot of network programming in other languages on other platforms,
you may be able to skip these two chapters.

The next two chapters throw some light on two parts of Java programming that are
critical to almost all network programs but are often misunderstood and misused, I/O
and threading. Chapter 4, Streams, explores Java’s classic I/O models which, despite
the new I/O APIs, aren’t going away any time soon and are still the preferred means
of handling input and output in most client applications. Understanding how Java
handles I/O in the general case is a prerequisite for understanding the special case of
how Java handles network /0. Chapter 5, Threads, explores multithreading and
synchronization, with a special emphasis on how they can be used for asynchronous
I/0O and network servers. Experienced Java programmers may be able to skim or skip
these two chapters. However, Chapter 6, Looking Up Internet Addresses, is essential
reading for everyone. It shows how Java programs interact with the domain name
system through the InetAddress class, the one class that’s needed by essentially all
network programs. Once you've finished this chapter, it’s possible to jump around in
the book as your interests and needs dictate. There are, however, some interdepen-
dencies between specific chapters. Figure P-1 should allow you to map out possible
paths through the book.

Preface | xv

Figure P-1. Chapter prerequisites

Chapter 7, URLs and URIs, explores Java’s URL class, a powerful abstraction for
downloading information and files from network servers of many kinds. The URL
class enables you to connect to and download files and documents from a network
server without concerning yourself with the details of the protocol the server speaks.
It lets you connect to an FTP server using the same code you use to talk to an HTTP
server or to read a file on the local hard disk.

Once you’ve got an HTML file from a server, you’re going to want to do something
with it. Parsing and rendering HTML is one of the most difficult challenges network
programmers can face. Chapter 8, HTML in Swing, introduces some little known
classes for parsing and rendering HTML documents that take this burden off your
shoulders and put it on Sun’s.

xi | Preface

Chapters 9 through 11 discuss Java’s low-level socket classes for network access.
Chapter 9, Sockets for Clients, introduces the Java sockets API and the Socket class in
particular. It shows you how to write network clients that interact with TCP servers
of all kinds including whois, finger, and HTTP. Chapter 10, Sockets for Servers,
shows you how to use the ServerSocket class to write servers for these and other pro-
tocols in Java. Chapter 11, Secure Sockets, shows you how to protect your client
server communications using the Secure Sockets Layer (SSL) and the Java Secure
Sockets Extension (JSSE).

Chapter 12, Non-Blocking 1/0, covers the new 1/0O APIs introduced in Java 1.4.
These APIs were specifically designed for network servers. They enable a program to
figure out whether a connection is ready before it tries to read from or write to the
socket. This allows a single thread to manage many different connections simulta-
neously, thereby placing much less load on the virtual machine. The new I/O APIs
don’t help much for small servers or clients that don’t open many simultaneous con-
nections, but they provide huge performance boosts for high volume servers that
want to transmit as much data as the network can handle as fast as the network can
deliver it.

Chapter 13, UDP Datagrams and Sockets, introduces the User Datagram Protocol
(UDP) and the associated DatagramPacket and DatagramSocket classes that provide fast,
unreliable communication. Finally, Chapter 14, Multicast Sockets, shows you how to
use UDP to communicate with multiple hosts at the same time. All the other classes
that access the network from Java rely on the classes described in these five chapters.

Chapters 15 through 17 look more deeply at the infrastructure supporting the URL
class. These chapters introduce protocol and content handlers, concepts unique to
Java that make it possible to write dynamically extensible software that automati-
cally understands new protocols and media types. Chapter 15, URLConnections,
describes the class that serves as the engine for the URL class of Chapter 7. It shows
you how to take advantage of this class through its public API. Chapter 16, Protocol
Handlers, also focuses on the URLConnection class but from a different direction; it
shows you how to subclass this class to create handlers for new protocols and URLs.
Finally, Chapter 17, Content Handlers, explores Java’s somewhat moribund mecha-
nism for supporting new media types.

Chapters 18 and 19 introduce two unique higher-level APIs for network programs,
Remote Method Invocation (RMI) and the JavaMail API. Chapter 18, Remote
Method Invocation, introduces this powerful mechanism for writing distributed Java
applications that run across multiple heterogeneous systems at the same time while
communicating with straightforward method calls just like a nondistributed pro-
gram. Chapter 19, The JavaMail API, acquaints you with this standard extension to
Java, which offers an alternative to low-level sockets for talking to SMTP, POP,

Preface | xvii

IMAP, and other email servers. Both of these APIs provide distributed applications
with less cumbersome alternatives to lower-level protocols.

Who You Are

This book assumes you are comfortable with the Java language and programming
environment, in addition to object-oriented programming in general. This book does
not attempt to be a basic language tutorial. You should be thoroughly familiar with
the syntax of Java. You should have written simple applications and applets. You
should also be comfortable with basic AWT and Swing programming. When you
encounter a topic that requires a deeper understanding for network programming
than is customary—for instance, threads and streams—1U’ll cover that topic as well,
at least briefly.

You should also be an accomplished user of the Internet. I will assume you know how
to FTP files and visit web sites. You should know what a URL is and how you locate
one. You should know how to write simple HTML and be able to publish a home page
that includes Java applets, although you do not need to be a super web designer.

However, this book doesn’t assume that you have prior experience with network
programming. You should find it a complete introduction to networking concepts
and network application development. I don’t assume that you have a few thousand
networking acronyms (TCP, UDP, SMTP, etc.) at the tip of your tongue. You’ll learn
what you need to know about these here. It’s certainly possible that you could use
this book as a general introduction to network programming with a socket-like inter-
face, and then go on to learn WSA (the Windows Socket Architecture) and figure out
how to write network applications in C++. But it’s not clear why you would want to:
as I said earlier, Java lets you write very sophisticated applications with ease.

Java Versions

Java’s network classes have changed a lot more slowly since Java 1.0 than other parts
of the core APL In comparison to the AWT or 1/O, there have been almost no
changes and only a few additions. Of course, all network programs make extensive
use of the I/O classes and many make heavy use of GUIs. This book is written with
the assumption that you and your customers are using at least Java 1.1. In general, I
use Java 1.1 features like readers and writers and the new event model freely without
further explanation.

Java 2 is a bit more of a stretch. Although I wrote almost this entire book using Java 2,
and although Java 2 has been available for most platforms for several years, no Java 2
runtime or development environment is yet available for MacOS 9. It is virtually cer-
tain that neither Apple nor Sun will ever port any version of Java 2 to MacOS 9.x or
earlier, thus effectively locking out 60% of the current Mac-installed base from future

xviii | Preface

developments. This is not a good thing for a language that claims to be “write once,
run anywhere.” Furthermore, Microsoft’s Java virtual machine supports Java 1.1
only and does not seem likely to improve in this respect for the foreseeable future.
Thus, while I have not shied away from using Java 2—specific features where they
seemed useful or convenient—for instance, the ASCIl encoding for the
InputStreamReader and the keytool program—TI have been careful to point out my use
of such features. Where 1.1 safe alternatives exist, they are noted. When a particular
method or class is new in Java 1.2 or later, it is noted by a comment following its
declaration like this:

public void setTimeToLive(int ttl) throws IOException // Java 1.2

To further muddy the waters, there are multiple versions of Java 2. At the time this
book was completed, the current release was the “Java™ 2 SDK, Standard Edition,
v 1.4.2_05”. At least that’s what it was called then. Sun seems to change names at
the drop of a marketing consultant. In previous incarnations, this is what was sim-
ply known as the JDK. Sun also makes available the “Java™ 2 Platform, Enterprise
Edition (J2EE™)” and “Java™ 2 Platform, Micro Edition (J2ME™)”, The Enter-
prise Edition is a superset of the standard edition that adds features like the Java
Naming and Directory Interface and the JavaMail API that provide high-level APIs
for distributed applications. Most of these additional APIs are also available as
extensions to the standard edition, and will be so treated here. The Micro Edition is
a subset of the standard edition targeted at cell phones, set-top boxes, and other
memory, CPU, and display-challenged devices. It removes a lot of the GUI APIs
programmers have learned to associate with Java, although surprisingly it retains
many of the basic networking and /O classes discussed in this book. Finally, when
this book was about half complete, Sun released a beta of the “Java™ 2 SDK, Stan-
dard Edition, v1.5”. This added a few pieces to the networking API, but left most of
the existing API untouched. Over the next few months Sun released several more
betas of JDK 1.5. The finishing touches were placed on this book and all the code
tested with JDK 1.5 beta 2. You shouldn’t have any trouble using this book after 1.5
is released. With any luck at all, discrepancies between the final specification and
what I discuss here will be quite minor.

To be honest, the most annoying problem with all these different versions and edi-
tions was not the rewriting they necessitated. It was figuring out how to identify
them in the text. I simply refuse to write Java™ 2 SDK, Standard Edition, v1.3 or
even Java 2 1.3 every time I want to point out a new feature in the latest release of
Java. I normally simply refer to Java 1.1, Java 1.2, Java 1.3, Java 1.4, and Java 1.5.
Overall, though, the networking API seems fairly stable. Java 1.1 through Java 1.3
are very similar, and there are a few only major additions in Java 1.4 and 1.5. Very
little of the post-1.0 networking API has been deprecated.

Preface | xix

About the Examples

Most methods and classes described in this book are illustrated with at least one
complete working program, simple though it may be. In my experience, a complete
working program is essential to showing the proper use of a method. Without a pro-
gram, it is too easy to drop into jargon or to gloss over points about which the author
may be unclear in his own mind. The Java API documentation itself often suffers
from excessively terse descriptions of the method calls. In this book, I have tried to
err on the side of providing too much explication rather than too little. If a point is
obvious to you, feel free to skip over it. You do not need to type in and run every
example in this book, but if a particular method does give you trouble, you are guar-
anteed to have at least one working example.

Each chapter includes at least one (and often several) more complex programs that
demonstrate the classes and methods of that chapter in a more realistic setting.
These often rely on Java features not discussed in this book. Indeed, in many of the
programs, the networking components are only a small fraction of the source code
and often the least difficult parts. Nonetheless, none of these programs could be
written as easily in languages that didn’t give networking the central position it occu-
pies in Java. The apparent simplicity of the networked sections of the code reflects
the extent to which networking has been made a core feature of Java, and not any
triviality of the program itself. All example programs presented in this book are avail-
able online, often with corrections and additions. You can download the source code
from http://www.cafeaulait.org/books/jnp3/.

This book assumes you are using Sun’s Java Development Kit. I have tested all the
examples on Linux and many on Windows and MacOS X. Almost all the examples
given here should work on other platforms and with other compilers and virtual
machines that support Java 1.2 (and most on Java 1.1, as well). The occasional
examples that require Java 1.3, 1.4, or 1.5 are clearly noted.

Conventions Used in This Book

Body text is Times Roman, normal, like you’re reading now.
A monospaced typewriter font is used for:
* Code examples and fragments

* Anything that might appear in a Java program, including keywords, operators,
data types, method names, variable names, class names, and interface names

* Program output

* Tags that might appear in an HTML document

x | Preface

A bold monospaced font is used for:
* Command lines and options that should be typed verbatim on the screen
An italicized font is used for:

* New terms where they are defined

* Pathnames, filenames, and program names (however, if the program name is
also the name of a Java class, it is given in a monospaced font, like other class
names)

* Host and domain names (java.oreilly.com)
* URLs (http://www.cafeaulait.org/slides/)
* Titles of other chapters and books (Java 1/0)

Significant code fragments and complete programs are generally placed into a sepa-
rate paragraph, like this:

Socket s = new Socket("java.oreilly.com", 80);
if (!s.getTcpNoDelay()) s.setTcpNoDelay(true);

When code is presented as fragments rather than complete programs, the existence
of the appropriate import statements should be inferred. For example, in the above
code fragment you may assume that java.net.Socket was imported.

Some examples intermix user input with program output. In these cases, the user
input will be displayed in bold, as in this example from Chapter 9:

% telnet rama.poly.edu 7
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '~]'.
This is a test

This is a test

This is another test

This is another test
9876543210

9876543210

]

telnet> close

Connection closed.

The Java programming language is case-sensitive. Java.net.socket is not the same as
java.net.Socket. Case-sensitive programming languages do not always allow authors
to adhere to standard English grammar. Most of the time, it’s possible to rewrite the
sentence in such a way that the two do not conflict, and when possible I have
endeavored to do so. However, on those rare occasions when there is simply no way
around the problem, I have let standard English come up the loser. In keeping with
this principle, when I want to refer to a class or an instance of a class in body text, I
use the capitalization that you’d see in source code, generally an initial capital with
internal capitalization—for example, ServerSocket.

Preface | i

Throughout this book, I use the British convention of placing punctuation inside
quotation marks only when punctuation is part of the material quoted. Although I
learned grammar under the American rules, the British system has always seemed far
more logical to me, even more so than usual when one must quote source code
where a missing or added comma, period, or semicolon can make the difference
between code that compiles and code that doesn’t.

Finally, although many of the examples used here are toy examples unlikely to be
reused, a few of the classes I develop have real value. Please feel free to reuse them or
any parts of them in your own code. No special permission is required. As far as I am
concerned, they are in the public domain (although the same is most definitely not
true of the explanatory text!). Such classes are placed somewhere in the com.macfaq
package, generally mirroring the java package hierarchy. For instance, Chapter 4’s
SafePrintWriter class is in the com.macfaq.io package. When working with these
classes, don’t forget that the compiled .class files must reside in directories match-
ing their package structure inside your class path, and that you’ll have to import
them in your own classes before you can use them. The book’s web page at http://
www.cafeaulait.org/books/jnp3/ includes a jar file containing all these classes that can
be installed in your class path.

o A
\

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Request for Comments

I enjoy hearing from readers, whether with general comments about this book, spe-
cific corrections, other topics you would like to see covered, or just war stories about
your own network programming travails. You can reach me by sending email to
elharo@metalab.unc.edu. Please realize, however, that I receive several hundred
pieces of email a day and cannot personally respond to each one. For the best
chances of getting a personal response, please identify yourself as a reader of this
book. If you have a question about a particular program that isn’t working as you
expect, try to reduce it to the simplest case that reproduces the bug, preferably a sin-
gle class, and paste the text of the entire program into the body of your email. Unso-
licited attachments will be deleted unopened. And please, please send the message
from the account you want me to reply to and make sure that your Reply-to address
is properly set! There’s nothing quite so frustrating as spending an hour or more

xxii | Preface

carefully researching the answer to an interesting question and composing a detailed
response, only to have it bounce because my correspondent was sending from a pub-
lic terminal and neglected to set the browser preferences to include their actual email
address.

I also adhere to the old saying “If you like this book, tell your friends. If you don’t like it,
tell me.” 'm especially interested in hearing about mistakes. This is my eighth book.
I've yet to publish a perfect one, but I keep trying. As hard as I and the editors at
O’Reilly worked on this book, I'm sure there are mistakes and typographical errors that
we missed here somewhere. And I’'m sure that at least one of them is a really embarrass-
ing whopper of a problem. If you find a mistake or a typo, please let me know so I can
correct it. T'll post it on the web page for this book at http://www.cafeaulait.org/books/
jnp3/ and on the O’Reilly web site at http://www.oreilly.com/catalog/javanetwk/errata/.
Before reporting errors, please check one of those pages to see if I already know about it
and have posted a fix. Any errors that are reported will be fixed in future printings.

Comments and Questions

Please address comments and questions concerning this book to the publisher:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional
information. You can access this page at:

http:/fwww.oreilly.com/catalog/javanp3/
To comment on or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http:/fwww.oreilly.com

The author maintains a web site for the discussion of EJB and related distributed
computing technologies at http://www.jmiddleware.com. jMiddleware.com provides
news about this book as well as code tips, articles, and an extensive list of links to
EJB resources.

Preface | i

