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PREFACE

Plane Algebraic Curves is based on lectures which I have given
to honours mathematics students at the University College of
Leicester during the last few years. Its aim is to give the
student who'is unfamiliar with the theory of curves a reasonably
brief introduction to the subject : he should then be in a posi-
tion to study the more advanced works, some of which are
recommended at the end of the book. ; :

It mdy fairly be said that there is a need for such a book.
There is no elémentary book on curves which is still in print,
and works such as Coolidge’s Algebraic Plane Curves and the
recent book by Walker on Algebraic Curves are too difficult for
a beginner. . '

I assume that the reader has studied analytical geometry,
using - Cartesian coordinates, as far as the theory of .conics.
I assume also that he knows a little about homogeneous co-*
ordinates, including the principle of duality : Chapter I of
Maxwell’s book on General Homogeneous Coordinates will be
sufficient for this purpose, except in some of the later examples.

Though the book is intended for honours mathematics
students at a university, the first few chapters could be studied
with profit by advanced sixth-form pupils in schools.

I should like to thank various bodies for permission to use

examination questions. Questions taken from Oxford Univer-
8ity examination. papers are reproduced by permission of the
Clarendon Press, Oxford, and are denoted by O. Those from
Cambridge Tripos papers are denoted by M.T., those from
. University of London papers by L., and those from the Oxford
" and Cambridge Joint Board Certificate papers by O.C.
" - There are examples for solution at the end of Chapters I, II,
III, TV, VI and VII, and a set of ‘general examples at the
end of the book. Full solutions of all these are given finally.
Difficult’examples are marked with an asterisk. - ,

I am indebted to the publishers for their courtesy and
patience in dealing with my requests, and to the printers for
the excellence of their work.

E. J. F. PRIMROSE
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CHAPTER I

- CURVES IN THE REAL EUCLIDEAN
PLANE '

1.1. The days when great time and trouble were taken in
tracing particular curves, often complicated, are past. To-day
the main emphasis is on powerful methods and results which
apply to curves in general. However, a small amount of
curve-tracing is useful in order to make the student familiar
with some of the properties of curves.

By curve-tracing we mean giving a rough diagram of a curve,
showing its most important features. We shall confine ourselves
to Euclidean geometry and to the field of real numbers, except
when we explicitly mention complex numbers. Before stating
the most important features of curves, we must give some
definitions.

1.2, (i) The degree n of a curve is the highest power of x and y
combined which oecurs in its equation : in homogeneous co-
ordinates 7 is the degree of every term of the equation. For
example, the curve 2% =1 is of degree 3, because the term 2%y
is of degree 3 in x and y combined : in homogeneous co-
ordinates, the equation is #2y =28, in which both the terms are
of degree 3. B

In the field of complex numbers the degree z is the number
of points in which the curve is met by any line provided that
(i) points at infinity are included and (ii) coincident points are
counted the appropriate number of times. By this we mean
that if the equation of the curve and the equation of the line
are solved (by eliminating one of the variables) and if an r-fold
root occurs in the resulting equation then the corresponding point
is counted r times. There are two ways in which a multiple
root may arise: either the line may touch the curve or it may
pass through a multiple point of the curve (see (ii) below).

1



2 PLANE ALGEBRAIC CURVES

In the field of real numbers the number of intersections may
be less than » because the equation obtained by eliminating
one of the variables may have less than n voots. However, the
number must be of the form n— 2h, where % is a non- negative
integer, because complex roots of a real equation occur in pairs.

As an example, we consider the intersections of the curve

¥y - 1)"= (z—y) («* - 22y + 3y%)
with the line z ~y=0. Eliminating z, we obtain g2 (y — 1)2=0
hence the line meets the curve twice at (0, 0) and twice at’ 1, 1)
After discussing multiple points we could show that (0,0) is a
double point and (1, 1) is a simple pvint at which x ~y=0 is
the tangent.

(ii) A double point of a curve is a point P such that every line
through P meets the curve iwice at P. Similarly a multiple
point of order r, or r-fold point (r>1) is & point P such that
every line through P meets the curve r times at P. A point
. which is not multiple is called simple. (We shall see‘later that
certain lines meet the curve more than r times at a multiple
point P)

(iii) An asympiote is a finite line which touches the curve at
infinity.. An example is either of the coordinate axes for the
hyperbola xy =c2.

1.3. We now give a list of the most important features of
curves. The first group, (i) to (iii), are properties of the curves
themselves and the second group, (1y) to (vi), depend on the
choice of coordinate axes.

They are as follows :

(i) The multiple points.

(i) The way in which the curve. tends to mﬁmty This
means finding the asymptotes and on which side of them the
curve tends to infinity, and branches tending to infinity but
not approaching an asymptote (as the parabola does, for
example) : such branches will be called non-linear.

(iii) Symmetry of the curve,

(iv). The points where the curve cuts the axes,
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(v) The form of the curve near the origin. :

(vi) Ranges of values of  which glve no real value for Y,
and vice versa.

We now examine some of theee fea.tures in detaxl

1.4. Multiple points

We first investigate the different types of double point. Let
the equation of the curve be written in ascending powers of
and y in the form ;

a+ (bx +cy) +}(dx=+2ezy+fy’) +..

and let the origin O be a double point. Any line y =ma through
O cuts the curve in points given by

a+ (b+em)z+ 4 (d + 2em +fm)a + ... =0.

This equation must have two roots =0 for all values of m,
and sc a=0, b=0, c=0. If, in addition, d +2em +fm?=0, but
d, e, f are not all zero, the line y =mx (but not every line
through O) meets the curve three times at O. Ehmma,tmg m
between the two equations, we obtain

da? + 2exy +fy=0, (1)

that is, the equation formed by equating the quadratlc terms
to zero. Three cases arise : ‘
(i) df —e2<0, when the equs.tion represents two lines
through O,
(i) df —e*>0, when the equation represents the point O,
_ (iii) df -e?*=0, when the equation represents one line (or two '
coincident lines) through O. »

Of course, in the field of complex numbers, (i) and (ii) both
give two lines through O.

We now show that the lines (if any) given ‘by (1).are the
tangents at O. Let @ be a point of the curve other than C.
Then OQ meets the curve twice at O and once at @ (and pos-
sibly at other points). If Q tends to O, then in the limit OQ
meets the curve three times at O and is, by the usual definition
of tangent, a tangent at O.
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The three cases may be drawn thus : :
) , The curve crosses itself at O and has two.
o< distinct tangents there. O is called a crunode.
o\ An example is the origin on the curve
(@ +y*)t=a(2* - y?).
L(ii) The curve has an isolated point at O, since
there are no tangents there. O is called an
acnode. An example is the origin on the curve
(2? - y*)2 =a?(2® + ¥?). \
(idi) ' There is one tangent at O, and O is called a
cusp. An example is the origin on the curve
°‘< y2=x3. There are also more complicated types
of cusp, which will be considered in detail in
Chapter IV. .
(i) and (ii) are both called nodes.
We now show how to find all the double points of a curve,
_ including those at infinity. In order to do this we use
homogeneous Cartesian coordinates. We first need a thnorem
which will be useful again later.
The function 9/0z{f(z, y, )}, evaluated for the values r= X
y=7Y, z=2Z, will be denoted by df/0.X, or fx.

THEOREM 1 o
If P(X, Y, Z) s a point on the curve f(x, y, z)=0, where
f(z, ¥, 2) is a homogeneous polynomial in x, y, z of degree n, and
Q (x, y, 2) is another point of the plane, then if any point on PQ
i8 expressed in the form (AX +ux, AY +py, AZ +pz), the inler-
sections of PQ with the curve are given by
A" (afx +yfy +2fz) + 1A 2 (@Y xx + Yy + 222 + 293 r
+ 2z2fzx + 2%Yfxy) + ... =0. (2)
Proof. The intersections with the curve are given by
FAX +p2, AY +py, AZ +pz)=0. .
Using Taylor’s theorem for a function of three variables, we
-have “
fOAX, XY, AZ) +uZxf,(AX, AY, AZ) + §u2[22Y,. (AX, AY, AZ)
+23yf, . (AX, AY, AZ)] + ... =0,

(e )
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where X stands for a summation over z,y,z. (Since f is a
polynomial in z, y,z, the expansion terminates.) Since f is
a homogeneous function of z; y, z, of degree n, we have

J(AX, AY, AZ)=A"f(X, Y, Z) =0, since P lies on the curve,
_ L2(AX, AY , AZ) =21 f (X, Y, Z)=A"1fy, . .

and so on. The result LOw follows immediately.

Coroliary. The tangent tu the curve at a simple point

(X, 7, Z)m
" &fy +yfy +2fz=0.

- For, if Q satisfies this equation, PQ meets the curve twice at
. P, and since P is a simple point PQ must be the tangent at P.
- Now if (X, ¥, Z) is a double point, equation (2) must have
two roots =0 for all z, y, 2, since PQ meets the curve twice

at P. Hence -
fX=O3 f1'=0,fz=0 )

(If the coordinates of a point satisfy these equations they auto-
matically satisfy the equation of the curve since, by Euler’s
theorem on homogeneous functions, nf=zxf,+ yf, + zf,.) The
reader should notice that we have three eqjuations to solve for
the two independent ratios of X, Y, Z, so that a general curve
has no double points.

If 2%fxx +22yzfyg =0, equation (2) has three roots =0, so
the line PQ meets the curve three times at P. This equation
therefore gives the ta.ngents (if a.ny) at P.

ExampPLE
Find the positions and types of the double points of the curve

flx, y, z2)=x? - 9z3(a'+y) +324=0.

For a double pomt

f,_2(.t’l/ "zs) 0 (3)
Jy=2(% -2°)=0, (4)
f.=622(—z -y +22)=0. (5)

Hence either

(i) 2=0, in which case either x=0 or y=0, or
(i) z=y, from (3) and (4), and x =y =z, from (5).
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Hence there are two ‘double points at infinity,* (1, 0, 0) and
(0, 1, 0), and a finite double point, (1,1, 1). Now
fu=2y’,.fn=2x f"-—122( -z -y+32),
Sys= —62% » fro= — 022 y far =
At (1,0,0), f,,=2, and all the others are zero. Hence the
tangents at (1, 0, 0) are given by 2=0. These are coincident,
8o (1, 0, 0) is a cusp with tangent y =0. Similarly (0, 1,0) is a

cusp with tangent 2=0. At (1,1, 1), for=2, fyy=2, f:;=12,
fus= -6, fi,=-6, f,y=4. The tangents at (1,1,1) are

‘therefore given by : , ‘
-~ A :
2% +y? + 622 — Byz — 62 + 4oy =0,
ie. 3(x+y) +y3(z-y)-62=0.

Hence the point (1, 1, 1) is a crunode.
~ In finding double points it is helpful to assume t,he result of
a theorem which we shall prove later, that a non-degenerate
curve of degree  (that is, a curve which does not split up into
two or more curves) cannot have more than }(n - 1)(n 2)
double pomts
If," as often happens, the curve is given®in the necn-
homogeneous form, and only the finite double points are
required (the double points at infinity can be found by another
method, as in the following section) 1t is easier to proceed as
follows. _
Sinee nf =af, +yf, +2f,,
- any point whose coordinates satisfy the equations f=0, f,=0,
fyv=0 also satisfies the equation 2f,=0. If the point is finite,
2#0, so f,=0. Hence the finite double points are given by
f=0, fo=0, f,=0, which can all be written in the non-
homogeneous form.
In the example above, finite double pomts are given by

f@y)=a*y-2(x+y)+3=0
Jo=2xy? -
Jy=22% -2=0.

* The interpretation of a double point at m.ﬁmty will be given later (1.5
exs. (ii), (xv))
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" From the last two equations z =y =1, which satisfies the first
equation. Hence (1, 1) is a double point.

In order to find the tangents at the double point, we transfer
the origin to the point (1,-1) by putting z=X+1, y=Y +1.
The equation of the curve then becomes

(X+1)2(Y +1)2-2(X + Y +2) +3=0.

The tangents are given by equating the terms of lowest
degree to zero, which gives '
' X2 +4XY + ¥2=0,
~ or, in terms of the original coordinates,
(z-1)*+4(x-1)(y-1)+(y-1)*=0.
Multiple points of higher order may be studied in the same
"way. The reader will be able to prove the followmg results for
a multiple point at the origin:
(i) the degree of the terms of lowest degree in z and y
combined is the order of the multiple point,

(ii) the tangents at the multiple point are given by equatmg
the terms of lowest degree in « and y to zero.

1.5. The asymptotes of a curve
THEOREM 2

- Let the equation of a curve be written, in non-homogeneous
Cartesian coordinates, in the form

F@ ) =F(@ Y) +far @ Y) + .o +fo=0,
where f, (x, y) is a homogeneous polynomial in x and y of degree r.
- Then .

(i) tf fn(z, y) contains a simple factor ax +by, so that f,(z, y) =

(ax +by)d,—; (%, ¥), the curve has an asymptote
(@2 +by)pn_1 (b, —@) +fa_1(b, —a)=0, - (1)

(u) if fa (%, y) contasns a repeated factor ax + by, and f,,_l(:c Y)
also contains a factor ax + by, so that f,, (z, y) = (az + by)*p,._,(x, y),
Fa-1(2, y) =(ax + by, (x, y), the curve has a pair of parallel
asymptotes whose combined equation ts

(@2 +b9)* _o(b, ~ @) + (@ + bY)hno(b, - @) +£u_a(b,~ 2) =0, (2)
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(iii) if fu(®;:y) contains a repeated factor ax+by, and
fa-1(®, y) does not contain a factor ux + by, there 18 no asymptote
in the direction ax +by=0.

Proof. We make the equation homogeneous in z,y, 2 so
that it is

f(x’ Y, 2) Efn(z’ )] +zfn—l(x! P+... +z”fo=0-
In each case there is a point at infinity (b, —a, 0).

- In (i), at (b, -a, 0), of/dx=ad,_, (b, - @), 0f/oy =bg,_, (b, - a),
0f[02=[ -1 (b, - @). The equation of the tangent at (b, —a, 0)
is therefore (1).

In (ii), at (b, —a, 0), 3f/ox=0, 8f/oy = 0 ofjoz = O so there is
a-double point at (b, -a, 0).. Now N

0%(ox® =2a%p, ,(b, —a), 0%[oy* =2b%, 4(b; —a)
P[0t =2fn s (b, —a),  OY[Oydz=bin_s(b, “a)
0¥ ordx =ap, 3 (b, ~a),~ 0%|dwdy=2abs, ,(b, —a).
The equation of the tangents at (b, -a, 0) is therefore (2).
In the special case where ,
'ﬁn-! (b, - a) = 4¢‘n—2 (b: T a)fﬂ—z(b’ -a),
the tangents coincide, sc the double point is a cusp.

In (iii), st (b, ~a, 0), 3f/3w=0, 3fjoy =0, 3fjoz=fns(b, ~a)
#0, so the tangent at (b, —a, 0) is 2=0.

ExamprLEs (i) zy(x+y)+xy+y*+3x=0. (L.)

At the point at infinity (0, 1, 0), corresponding to the factor -
in the terms of the highest degree, we have a=1, ¥=0,
po=y(x+y), fo=y(z+y). Using (1), we see that the asymptote
is 24 1=0. For the point (1,0,0), a=0, b=1, ¢,=x(z+y),
fo=y(x+y). The asymptote is y =0. For the point (1, -1, 0),
a=1, =1, ¢;=ay, fy=y(@+y). The asymptote is x +y=0.

(i) z(x+y)2-z(@+y)+1=0.

The point (0, 1, 0) is treated asin (i). For the point (1, - 1,0),

a=1, b=1, $,=2, ¢, = -, f;=0. Using (2), we see that the

asymptotes are
‘ (x+y)—(r+y)=
i.e. x+y=0orl.

R +aey+x 3y +3=0. (L.)
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For the point (0, 1, 0), a=1, b=0, ¢, =y?, d, =0, fy=ay. The
asymptotes are therefore x2=0, so there is a cusp at (0, 1;0).
The point (1, 0, 0) is treated similarly.

(i) (2 +y)(x - y)*=3zy - y*.

The point (1, — 1, 0) is treated as in (i). Since the quadratic
terms do not contain a factor x —y, there is no asymptote in
the direction x —y=0.

Although Theorem 2 gives +he asymptotes quite easily, it
does not tell us on which side of the asymptote the curve lies
at each end. We now give two methods which overcome this
difficulty.

(1) One method, which is straightforward though rather
long, is to assume that, for sufficiently large values of x, the
equation of the curve can be expressed in the form '

y=mx+c+afx+plr:+ ..,

where the right-hand side is a convergent series. If this is so,
then if we substitute this value for y in the equation of the
curve, the resulting equation in z must be satisfied identically.
We therefore equate the coefficients of the different powers of
x to zero, thus obtaining equa.tions for the ccefficients m, c,
«, B, ete. .

Now, as z tends to infinity, the value of y —max — ¢ tends to
zero, so the asymptote is y=mx +c. The difference between y
on the curve and y on the asymptote (for a given z) is given
by the terms «/z + B/x®+..., of which the first non-vanishing
term is the most significant. We shall see in examples how this

- enables us to find on which side of the asymptote the curve lies.

This process breaks down in three cases. Firstly, if an
asymptote is parallel to the y axis, m would have to be infinite.
In this case we write 2 =c + afy + B[y® + ... and proceed as before.
Secondly, if a branch tends to infinity but does not approach
an asymptote, the equation of the curve cannot be expressed
in the given form, and a -contradiction arises. Thirdly, if a
curve has branches going to the same end of an asymptote,
again the equation cannot be expressed in the given form. We
shall see examples of these later.

B
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ExampLEs (i) xy(x+y)+xy+y’+:§x =0. -
The directions of the asymptotes are given by xz=0, y =0,
z+ y =0. For the last two, we put
y=mz +c+afr+Bfr+
Equating to zero the coefficients of powers of z, we have,
for@®: m(m+1)=0. This gives the directions again.
for 2 : ¢(2m+1)+m+m*=0. This gives c=0 whether

m=0or —1.
forz: @m+)a+o+e+2me+3=0. Ifm= 0,a=-3: if
m= -1, a=3. _
Hence . y=-—3/x+...ory=—x+3/x+

The asymptotes are y=0 and z +y=0. We now ﬁnd on which -

side of the asymptotes the curve lies.

(@) y=0. When z is large and positive, y for the curve is

less than y for the asymptote. Hence the curve lies below the
asymptote at that end. When z is large and negative, y for
the curve is greater than y for the asymptote. Hence the
curve lies above the asymptote at that end. '

-(b) z+y=0. When x is large and positive, y for the curve’

is greater than y for the asymptote. Hence the curve lies above

the asymptote at that end. Slmxlarly, the curve lies below the _

asymptote at the other end.
We mnow find the asymptote parallel - to = 0 We put

%= c+a/y+B/y’+ ;
Equatmg to zero the coeﬂ‘icxent.s of powers of Y, we have
for y*: ¢+1=0.
fory c*+atc=0. Soa=0.
fory 2ca+fB+a+3c=0. Sof=3.
_ Hence T=—1+3/y2+... :
-The asymptote is 2= — 1. When y is large, whether positive

or negative, z for the curve is greater than « for the asymptote.
Hence the curve lies to the right of the asymptote at each end.

4
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If we had written
z= my+c+a/y+ﬁ/y +.. A

we should have obtained another N
solution _ -

.
’

- e - - - -

N

z=-y-3ly+...,

which is a.hc;ther form for ﬁlé branch »

7

= —x+3/x+

whicliwe. found before. The reader Fra. 1
should verify that both forms give the same situation of the
curve relative to the a.symptote :

(i) z(x+y)?-z@@+y)+1=0.

The directions of the asympt,otes are glven by =0,z +y=0
(we shall see later the significance of the repeated factor), We
put - ; : o
) z=my+c+aly+ply*+...

(this will give all three asymptotes).

Equa.tmg to zero the coefficients of powers of y, we have
for y®: m(m+1)2=0. This gives the directions again.
fory®: 2em(m+1)+c(m+1)2-m(m+1)=0. fm=0,¢=0:

' if m = — 1, the equation is satisfied ide'ntica.lly.
for y: me?+2m(m +1)a+2c%(m+1) +a(m+1)3—c(2m+1) -
=0. Ifm:O, a=0: ifm: = 1, c=0 or ’1. ._ :
for y°: 2mea+ 2m (m+ 1)B+ ¢® + ¢ (m + 1)a+ B(m +1)2 —
——a(m+1)+1=0. fm=0,8=-1: ifm= -1
and ¢=0, a==1: ifm='—l.-gmd c=1,a=1. .
Hence - - ' gt T A :
z=-1fy*+...orz=—y— 1/y+ .orz= —y+1+1jy+..
The asymptotes are =0, z+y=0, x+y 1=0, and we find on
which side 0. the asymptotes the curve lies as before. We now

see that there are two asymptotes in the direction z+y=0,
which accounts for the repeated factor. The curve has a double '
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point at infinity in this direction, which is a node, because the
tangents there are distinct. (See fig. 2.)

N (iii) (= +y)(x—y)*=38xy -y~

The directions of the asymptotes

AN | are given by x+y=0, xr-y=0:
NI IR again we have a repeated factor.

We put

I Y=mx+c+afrt...
\ From now onwards, we omit the
i details and just quote the results.
Fie. 2 We have -
(m+ 1)(-in— 1)2=0, giving m= -1 or 1.
2¢(m2—1) +¢(m—1)2=3m —-m?2

Ifm=-1,¢=-1: if m=1, we obtain a contradiction. Hence
this method breaks down for the direction z-y=0. The
reason is, as we shall see later, that the curve has a non-linear
brench. If m= -1, we may complete the workmg as before,
(iv) x'y?a zy+a+3y+3=0.
The directions of the asymptotes are ngen by =0 and
y =0, both repeated. We put
y=c+aojr+...
We have =0,
2ce.+¢+ 1= 0,

which give a contradiction. The reason why this method
breaks down is, as we shall see later, that the curve has

" branches going to the same end of the asymptote.

(2) The second method which we shall describe is shorter
than the first, and has the advantage that it deals successfully
with the cases where the first method breaks down. However,
it needs very great care in interpreting the results.

Case I. The curve has no double point at infinity.
If we can express the equation as a product of » linear factors



