B B R = % 3

PEARS
Addison

Patterns of Enterprise
Application Architecture

(L ATV B ) e

5‘/ EI] HE(
xH

[ £ ] Martin Fowler % Software Development
Productivity Award

AZ{Em

-
Yo -
PATTERNS OF 21 JavaWorld AR &£ Java B H =

ENTERPRISE . e o
- I @9 1 (EHG) 1E#& Martin Fowler {5 =

ARCHITECTURE SR BEEZCWHAZEMERGES -
NESMEX N AZEMLMHMAEEHNKE -

MarTIN FOWLER

~

Eﬂ'?"@f{)ﬂ;”. HA 14

www.infopower.com.cn




R B R R R =N

Patterns of Enterprise
Application Architecture

AR IS A

(RZENhR)

[ % ] Martin Fowler ¥

() 4B % 4% th it

www.infopower.com.cn



Patterns of Enterprise Application Architecture(ISBN 0-321-12742-0)
Martin Fowler

Copyright © 2003 Addison Wesley, Inc.

Original English Language Edition Published by Addison Wesley, Inc.
All rights reserved. .

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC POWER PRESS,
Copyright © 2003,

AR HI H Pearson Education $2AXH H a1 ) HIRAL7E - E S A (FHE. I MR BUX R & 753
DXERSN) MMEF AR, KAT.
REHREBEFT, NELEAE AR HBRSRA VR RS .

A BN Pearson Education Bithit%, TS H A,

LRHREEFRAERGCS BF: 01-2004-1301

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

RETFFENRCHMEREA (AEETEEE. BTN E 63X #HERIT.

FHEMmME (CIP) ##

v SRR/ (3E) EE) (Fowler, M) &. RHA. —tx:. THEE HBRYE, 2004
(FERRRBRID

ISBN 7-5083-2201-0

[ 4. NLAR#TA-FBFRE—NA-SERE—-X L IV.F270.7

T E A E 151 CIP $3E T (2004) 5 029865 5

AP L JRARERS

B & DN RAEAER (BERD

Eo Z: (3) Martin Fowler

TG Gkt

AR EAT: FE S HRRA
Wik LR SEARBCE ISR 100044
HiE:  (010) 88515918 £ H: (010) 88518169

B R AERTERENRIT

F 787X 1092 1/16 Bl K34

# : ISBN 7-5083-2201-0

R ¥K: 2004 F 5 BAERE L IR 2004 5 A% 1 IKENRI

e

fR

dn Bt

#r: 49.80 7C

BURA BHE 5T




For Denys William Fowler, 1922-2000
in memoriam

—Martin




Preface

In the spring of 1999 I flew to Chicago to consult on a project being done by
ThoughtWorks, a small but rapidly growing application development company.
The project was one of those ambitious enterprise application projects: a back-
end leasing system. Essentially it deals with everything that happens to a lease
after you’ve signed on the dotted line: sending out bills, handling someone
upgrading one of the assets on the lease, chasing people who don’t pay their
bills on time, and figuring out what happens when someone returns the assets
early. That doesn’t sound too bad until you realize that leasing agreements are
infinitely varied and horrendously complicated. The business “logic” rarely fits
any logical pattern, because, after all, it’s written by business people to capture
business, where odd small variations can make all the difference in winning a
deal. Each of those little victories adds yet more complexity to the system.

That’s the kind of thing that gets me excited: how to take all that complexity
and come up with a system of objects that can make the problem more tracta-
ble. Indeed, I believe that the primary benefit of objects is in making complex
logic tractable. Developing a good Domain Model (116) for a complex business
problem is difficult but wonderfully satisfying.

Yet that’s not the end of the problem. Our domain model had to be persisted
to a database, and, like many projects, we were using a relational database. We
also had to connect this model to a user interface, provide support to allow
remote applications to use our software, and integrate our software with third-
party packages. All of this on a new technology called J2EE, which nobody in
the world had any real experience in using.

Even though this technology was new, we did have the benefit of experience.
I'd been doing this kind of thing for ages with C++, Smalltalk, and CORBA.
Many of the ThoughtWorkers had a lot of experience with Forte. We already
had the key architectural ideas in our heads, and we just had to figure out how

Xxv




PREFACE

to apply them to J2EE. Looking back on it three years later, the design is not
perfect but it has stood the test of time pretty damn well.

That’s the kind of situation this book was written for. Over the years ['ve
seen many enterprise application projects. These projects often contain similar
design ideas that have proven effective in dealing with the inevitable complexity
that enterprise applications possess. This book is a starting point to capture
these design ideas as patterns.

The book is organized in two parts, with the first part a set of narrative chap-
ters on a number of important topics in the design of enterprise applications.
These chapters introduce various problems in the architecture of enterprise appli-
cations and their solutions. However, they don’t go into much detail on these
solutions. The details of the solutions are in the second part, organized as pat-
terns. These patterns are a reference, and I don’t expect you to read them cover to
cover. My intention is that you read the narrative chapters in Part 1 from start to
finish to get a broad picture of what the book covers; then you dip into the pat-
terns chapters of Part 2 as your interest and needs drive you. Thus, the book is a
short narrative book and a longer reference book combined into one.

This is a book on enterprise application design. Enterprise applications are
about the display, manipulation, and storage of large amounts of often complex
data and the support or automation of business processes with that data.
Examples include reservation systems, financial systems, supply chain systems,
and many others that run modern business. Enterprise applications have their
own particular challenges and solutions, and they are different from embedded
systems, control systems, telecoms, or desktop productivity software. Thus, if
you work in these other fields, there’s nothing really in this book for you (unless
you want to get a feel for what enterprise applications are like.) For a general
book on software architecture, ’d recommend [POSA).

There are many architectural issues in building enterprise applications. 'm
afraid this book can’t be a comprehensive guide to them. In building software
P'm a great believer in iterative development. At the heart of iterative develop-
ment is the notion that you should deliver software as soon as you have some-
thing useful to the user, even if it’s not complete. Although there are many
differences between writing a book and writing software, this notion is one that
I think the two share. That said, this book is an incomplete but (I trust) useful

compendium of advice on enterprise application architecture. The primary top-
ics I talk about are

* Layering of enterprise applications

* Structuring domain (business) logic



PREFACE v

¢ Linking in-memory modules (particularly objects) to a relational database

e Structuring a Web user interface

¢ Handling session state in stateless environments

Principles of distribution

The list of things I don’t talk about is rather longer. I really fancied writing
about organizing validation, incorporating messaging and asynchronous com-
munication, security, error handling, clustering, application integration, archi-
tectural refactoring, structuring rich-client user interfaces, among other topics.
However, because of space and time constraints and lack of cogitation, you
won’t find them in this book. I can only hope to see some patterns for this work
in the near future. Perhaps I’ll do a second volume someday and get into these
topics, or maybe someone else will fill these and other gaps.

Of these, message-based communication is a particularly big issue. People
who are integrating multiple applications are increasingly making use of asyn-
chronous message-based communication approaches. There’s much to be said
for using them within an application as well.

This book is not intended to be specific for any particular software platform.
I first came across these patterns while working with Smalltalk, C++, and
CORBA in the late *80s and early *90s. In the late *90s I started to do extensive
work in Java and found that these patterns applied well to both early Java/
CORBA systems and later J2EE-based work. More recently I’ve been doing
some initial work with Microsoft’s .NET platform and find the patterns apply
again. My ThoughtWorks colleagues have also introduced their experiences,
particularly with Forte. I can’t claim generality across all platforms that have
ever been or will be used for enterprise applications, but so far these patterns
have shown enough recurrence to be useful.

I have provided code examples for most of the patterns. My choice of lan-
guage for them is based on what I think most readers are likely to be able to read
and understand. Java is a good choice here. Anyone who can read C or C++ can
read Java, yet Java is much less complex than Cs+. Essentially most C++ pro-
grammers can read Java but not vice versa. I’'m an object bigot, so I inevitably
lean to an OO language. As a result, most of the code examples are in Java. As |
was working on the book, Microsoft started stabilizing its .NET environment,
and its C# language has most of the same properties as Java for an author. So I
did some of the code examples in C# as well, although that introduced some risk
since developers don’t have much experience with .NET and so the idioms for
using it well are less mature. Both are C-based languages, so if you can read one
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you should be able to read both, even if you aren’t deeply into that language or
platform. My aim was to use a language that the largest amount of software
developers can read, even if it’s not their primary or preferred language. (My
apologies to those who like Smalitalk, Delphi, Visual Basic, Perl, Python, Ruby,
COBOL, or any other language. I know you think you know a better language
than Java or C#. All I can say is I do, too!)

The examples are there for inspiration and explanation of the ideas in the
patterns. They aren’t canned solutions; in all cases you’ll need to do a fair bit of
work to fit them into your application. Patterns are useful starting points, but
they are not destinations.

Who This Book Is For

Pve written this book for programmers, designers, and architects who are
building enterprise applications and who want to improve either their under-
standing of architectural issues or their communication about them.

I’'m assuming that most of my readers will fall into two groups: those with
modest needs who are looking to build their own software and readers with
more demanding needs who will be using a tool. For those of modest needs, my
intention is that these patterns should get you started. In many areas you’ll need
more than the patterns will give you, but I'll provide you more of a headstart in
this field than I got. For tool users I hope this book will give you some idea of
what’s happening under the hood and also help you choose which of the tool-
supported patterns to use. Using, say, an object-relational mapping tool still
means that you have to make decisions about how to map certain situations.
Reading the patterns should give you some guidance in making the choices.

There is a third category; those with demanding needs who want to build their
own software. The first thing I'd say here is to look carefully at using tools. I’ve
seen more than one project get sucked into a long exercise at building frame-
works, which wasn’t what the project was really about. If you’re still convinced,
8o ahead. Remember in this case that many of the code examples in this book are
deliberately simplified to help understanding, and you’ll find you’ll need to do a
lot tweaking to handle the greater demands you face.

Since patterns are common solutions to recurring problems, there’s a good
chance that you have already come across some of them. If you’ve been work-
ing in enterprise applications for a while, you may well know most of them. 'm
not claiming to present anything new in this book. Indeed, I claim the oppo-
site—this is a book of (for our industry) old ideas. If you're new to this field, 1
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hope the book will help you learn about these techniques. If you’re familiar
with the techniques, I hope the book will help you communicate and teach
them to others. An important part of patterns is trying to build a common
vocabulary, so you can say that this class is a Remote Facade (388) and other
designers will know what you mean.

Acknowledgments

As with any book, what’s written here has a great deal to do with the many
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Randy Stafford contributed Service Layer (133) as he’s been such a strong
advocate for it. I'd also like to thank Edward Hieatt and Rob Mee for their con-
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As usual, I owe more than I can say to my first-class panel of official reviewers:

John Brewer Rob Mee

Kyle Brown Gerard Meszaros
Jens Coldewey Dirk Riehle

John Crupi Randy Stafford
Leonard Fenster David Siegel
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stein, Bosko Zivaljevic , Brad Jones, Brian Foote, Brian Marick, Federico Bal-
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My biggest thanks is, as ever, to my wife Cindy, whose company I appreciate
much more than anyone can appreciate this book.
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Colophon

This is the first book that I wrote using XML and related technologies. The
master text was written as a series of XML documents using trusty TextPad.
also used a home-grown DTD. While I was working I used XSLT to generate
the web pages for the HTML site. For the diagrams I relied on my old friend
Visio using Pavel Hruby’s wonderful UML templates (much better than those
that come with the tool. I have a link on my Web site if you want them.) I wrote
a small program that automatically imported the code examples into the out-
put, which saved me from the usual nightmare of code cut and paste. For my
first draft I tried XSL-FO with Apache FOP. At the time it wasn’t quite up to the
job, so for later work I wrote scripts in XSLT and Ruby to import the text into
FrameMaker.

I used several open source tools while working on this book—in particular,
JUnit, NUnit, ant, Xerces, Xalan, Tomcat, Jboss, Ruby, and Hsql. My thanks to
the many developers of these tools. There was also a long list of commercial
tools. In particular, I relied on Visual Studio for .NET and on IntelliJ’s wonder-
ful Idea—the first IDE that’s excited me since Smalltalk—for Java.

The book was acquired for Addison Wesley by Mike Hendrickson who,
assisted by Ross Venables, has supervised its publication. I started work on the
manuscript in November 2000 and released the final draft to production in
June 2002. As I write this, the book is due for release in November 2002 at
OOPSLA.

Sarah Weaver was the production editor, coordinating the editing, composi-
tion, proofreading, indexing, and production of final files. Dianne Wood was
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the copy editor, carrying out the tricky job of cleaning up my English without
introducing any untoward refinement. Kim Arney Mulcahy composed the book
into the design you see here, cleaned up the diagrams, set the text in Sabon, and
prepared the final Framemaker files for the printer. The text design is based on
the format we used for Refactoring. Cheryl Ferguson proofread the pages and
ferreted out any errors that had slipped through the cracks. Irv Hershman pre-
pared the index.

About the Cover Picture

During the couple of years I spent writing this book a more significant construc-
tion project was going on in Boston. The Leonard P. Zakim Bunker Hill Bridge
(try fitting that name on a road sign) will replace the ugly double-decker that
now carries Interstate 93 over the Charles River. The Zakim bridge is a cable-
stayed bridge, a style that hasn’t been widely used in the U.S. so far, but is very
popular in Europe. The Zakim bridge isn’t particularly long, but it is the
world’s widest cable-stayed bridge and also the first U.S. cable-stayed bridge to
have an asymmetric design. It’s a very beautiful bridge, but that doesn’t stop me
from teasing Cindy about Henry Petroski’s conjecture that we are due for a
major failure in a cable-stayed bridge soon.

Martin Fowler, Melrose, Massachusetts, August 2002
bttp:/fmartinfowler.com
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