B B R = % 3

PEARS
Addison

Patterns of Enterprise
Application Architecture

(L ATV B) e

5‘/ EI] HE(
xH

[£] Martin Fowler % Software Development
Productivity Award

AZ{Em

-
Yo -
PATTERNS OF 21 JavaWorld AR &£ Java B H =

ENTERPRISE . e o
- I @9 1 (EHG) 1E#& Martin Fowler {5 =

ARCHITECTURE SR BEEZCWHAZEMERGES -
NESMEX N AZEMLMHMAEEHNKE -

MarTIN FOWLER

~

Eﬂ'?"@f{)ﬂ;”. HA 14

www.infopower.com.cn

R B R R R =N

Patterns of Enterprise
Application Architecture

AR IS A

(RZENhR)

[%] Martin Fowler ¥

() 4B % 4% th it

www.infopower.com.cn

Patterns of Enterprise Application Architecture(ISBN 0-321-12742-0)
Martin Fowler

Copyright © 2003 Addison Wesley, Inc.

Original English Language Edition Published by Addison Wesley, Inc.
All rights reserved. .

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC POWER PRESS,
Copyright © 2003,

AR HI H Pearson Education $2AXH H a1) HIRAL7E - E S A (FHE. I MR BUX R & 753
DXERSN) MMEF AR, KAT.
REHREBEFT, NELEAE AR HBRSRA VR RS .

A BN Pearson Education Bithit%, TS H A,

LRHREEFRAERGCS BF: 01-2004-1301

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

RETFFENRCHMEREA (AEETEEE. BTN E 63X #HERIT.

FHEMmME (CIP) ##

v SRR/ (3E) EE) (Fowler, M) &. RHA. —tx:. THEE HBRYE, 2004
(FERRRBRID

ISBN 7-5083-2201-0

[4. NLAR#TA-FBFRE—NA-SERE—-X L IV.F270.7

T E A E 151 CIP $3E T (2004) 5 029865 5

AP L JRARERS

B & DN RAEAER (BERD

Eo Z: (3) Martin Fowler

TG Gkt

AR EAT: FE S HRRA
Wik LR SEARBCE ISR 100044
HiE: (010) 88515918 £ H: (010) 88518169

B R AERTERENRIT

F 787X 1092 1/16 Bl K34

: ISBN 7-5083-2201-0

R ¥K: 2004 F 5 BAERE L IR 2004 5 A% 1 IKENRI

e

fR

dn Bt

#r: 49.80 7C

BURA BHE 5T

For Denys William Fowler, 1922-2000
in memoriam

—Martin

Preface

In the spring of 1999 I flew to Chicago to consult on a project being done by
ThoughtWorks, a small but rapidly growing application development company.
The project was one of those ambitious enterprise application projects: a back-
end leasing system. Essentially it deals with everything that happens to a lease
after you’ve signed on the dotted line: sending out bills, handling someone
upgrading one of the assets on the lease, chasing people who don’t pay their
bills on time, and figuring out what happens when someone returns the assets
early. That doesn’t sound too bad until you realize that leasing agreements are
infinitely varied and horrendously complicated. The business “logic” rarely fits
any logical pattern, because, after all, it’s written by business people to capture
business, where odd small variations can make all the difference in winning a
deal. Each of those little victories adds yet more complexity to the system.

That’s the kind of thing that gets me excited: how to take all that complexity
and come up with a system of objects that can make the problem more tracta-
ble. Indeed, I believe that the primary benefit of objects is in making complex
logic tractable. Developing a good Domain Model (116) for a complex business
problem is difficult but wonderfully satisfying.

Yet that’s not the end of the problem. Our domain model had to be persisted
to a database, and, like many projects, we were using a relational database. We
also had to connect this model to a user interface, provide support to allow
remote applications to use our software, and integrate our software with third-
party packages. All of this on a new technology called J2EE, which nobody in
the world had any real experience in using.

Even though this technology was new, we did have the benefit of experience.
I'd been doing this kind of thing for ages with C++, Smalltalk, and CORBA.
Many of the ThoughtWorkers had a lot of experience with Forte. We already
had the key architectural ideas in our heads, and we just had to figure out how

Xxv

PREFACE

to apply them to J2EE. Looking back on it three years later, the design is not
perfect but it has stood the test of time pretty damn well.

That’s the kind of situation this book was written for. Over the years ['ve
seen many enterprise application projects. These projects often contain similar
design ideas that have proven effective in dealing with the inevitable complexity
that enterprise applications possess. This book is a starting point to capture
these design ideas as patterns.

The book is organized in two parts, with the first part a set of narrative chap-
ters on a number of important topics in the design of enterprise applications.
These chapters introduce various problems in the architecture of enterprise appli-
cations and their solutions. However, they don’t go into much detail on these
solutions. The details of the solutions are in the second part, organized as pat-
terns. These patterns are a reference, and I don’t expect you to read them cover to
cover. My intention is that you read the narrative chapters in Part 1 from start to
finish to get a broad picture of what the book covers; then you dip into the pat-
terns chapters of Part 2 as your interest and needs drive you. Thus, the book is a
short narrative book and a longer reference book combined into one.

This is a book on enterprise application design. Enterprise applications are
about the display, manipulation, and storage of large amounts of often complex
data and the support or automation of business processes with that data.
Examples include reservation systems, financial systems, supply chain systems,
and many others that run modern business. Enterprise applications have their
own particular challenges and solutions, and they are different from embedded
systems, control systems, telecoms, or desktop productivity software. Thus, if
you work in these other fields, there’s nothing really in this book for you (unless
you want to get a feel for what enterprise applications are like.) For a general
book on software architecture, ’d recommend [POSA).

There are many architectural issues in building enterprise applications. 'm
afraid this book can’t be a comprehensive guide to them. In building software
P'm a great believer in iterative development. At the heart of iterative develop-
ment is the notion that you should deliver software as soon as you have some-
thing useful to the user, even if it’s not complete. Although there are many
differences between writing a book and writing software, this notion is one that
I think the two share. That said, this book is an incomplete but (I trust) useful

compendium of advice on enterprise application architecture. The primary top-
ics I talk about are

* Layering of enterprise applications

* Structuring domain (business) logic

PREFACE v

¢ Linking in-memory modules (particularly objects) to a relational database

e Structuring a Web user interface

¢ Handling session state in stateless environments

Principles of distribution

The list of things I don’t talk about is rather longer. I really fancied writing
about organizing validation, incorporating messaging and asynchronous com-
munication, security, error handling, clustering, application integration, archi-
tectural refactoring, structuring rich-client user interfaces, among other topics.
However, because of space and time constraints and lack of cogitation, you
won’t find them in this book. I can only hope to see some patterns for this work
in the near future. Perhaps I’ll do a second volume someday and get into these
topics, or maybe someone else will fill these and other gaps.

Of these, message-based communication is a particularly big issue. People
who are integrating multiple applications are increasingly making use of asyn-
chronous message-based communication approaches. There’s much to be said
for using them within an application as well.

This book is not intended to be specific for any particular software platform.
I first came across these patterns while working with Smalltalk, C++, and
CORBA in the late *80s and early *90s. In the late *90s I started to do extensive
work in Java and found that these patterns applied well to both early Java/
CORBA systems and later J2EE-based work. More recently I’ve been doing
some initial work with Microsoft’s .NET platform and find the patterns apply
again. My ThoughtWorks colleagues have also introduced their experiences,
particularly with Forte. I can’t claim generality across all platforms that have
ever been or will be used for enterprise applications, but so far these patterns
have shown enough recurrence to be useful.

I have provided code examples for most of the patterns. My choice of lan-
guage for them is based on what I think most readers are likely to be able to read
and understand. Java is a good choice here. Anyone who can read C or C++ can
read Java, yet Java is much less complex than Cs+. Essentially most C++ pro-
grammers can read Java but not vice versa. I’'m an object bigot, so I inevitably
lean to an OO language. As a result, most of the code examples are in Java. As |
was working on the book, Microsoft started stabilizing its .NET environment,
and its C# language has most of the same properties as Java for an author. So I
did some of the code examples in C# as well, although that introduced some risk
since developers don’t have much experience with .NET and so the idioms for
using it well are less mature. Both are C-based languages, so if you can read one

PREFACE

you should be able to read both, even if you aren’t deeply into that language or
platform. My aim was to use a language that the largest amount of software
developers can read, even if it’s not their primary or preferred language. (My
apologies to those who like Smalitalk, Delphi, Visual Basic, Perl, Python, Ruby,
COBOL, or any other language. I know you think you know a better language
than Java or C#. All I can say is I do, too!)

The examples are there for inspiration and explanation of the ideas in the
patterns. They aren’t canned solutions; in all cases you’ll need to do a fair bit of
work to fit them into your application. Patterns are useful starting points, but
they are not destinations.

Who This Book Is For

Pve written this book for programmers, designers, and architects who are
building enterprise applications and who want to improve either their under-
standing of architectural issues or their communication about them.

I’'m assuming that most of my readers will fall into two groups: those with
modest needs who are looking to build their own software and readers with
more demanding needs who will be using a tool. For those of modest needs, my
intention is that these patterns should get you started. In many areas you’ll need
more than the patterns will give you, but I'll provide you more of a headstart in
this field than I got. For tool users I hope this book will give you some idea of
what’s happening under the hood and also help you choose which of the tool-
supported patterns to use. Using, say, an object-relational mapping tool still
means that you have to make decisions about how to map certain situations.
Reading the patterns should give you some guidance in making the choices.

There is a third category; those with demanding needs who want to build their
own software. The first thing I'd say here is to look carefully at using tools. I’ve
seen more than one project get sucked into a long exercise at building frame-
works, which wasn’t what the project was really about. If you’re still convinced,
8o ahead. Remember in this case that many of the code examples in this book are
deliberately simplified to help understanding, and you’ll find you’ll need to do a
lot tweaking to handle the greater demands you face.

Since patterns are common solutions to recurring problems, there’s a good
chance that you have already come across some of them. If you’ve been work-
ing in enterprise applications for a while, you may well know most of them. 'm
not claiming to present anything new in this book. Indeed, I claim the oppo-
site—this is a book of (for our industry) old ideas. If you're new to this field, 1

PREFACE

hope the book will help you learn about these techniques. If you’re familiar
with the techniques, I hope the book will help you communicate and teach
them to others. An important part of patterns is trying to build a common
vocabulary, so you can say that this class is a Remote Facade (388) and other
designers will know what you mean.

Acknowledgments

As with any book, what’s written here has a great deal to do with the many
people who have worked with me in various ways over the years. Lots of peo-
ple have helped in lots of ways. Often I don’t recall important things people
said that went into this book, but I can acknowledge those contributions I do
remember.

Pll start with my contributors. David Rice, a colleague of mine at Thought-
Works, has made a huge contribution—a good tenth of the book. As we
worked hard to hit the deadline (while he was also supporting a client), we had
several late-night instant message conversations where he confessed to finally
seeing why writing a book is both so hard and so compulsive.

Matt Foemmel is another ThoughtWorker, and although the Arctic will need
air conditioning before he writes prose for fun, he’s been a great contributor of
code examples (as well as a very succinct critic of the book.) I was pleased that
Randy Stafford contributed Service Layer (133) as he’s been such a strong
advocate for it. I'd also like to thank Edward Hieatt and Rob Mee for their con-
tribution, which arose from Rob’ noticing a gap while he was doing his review
of the text. He became my favorite reviewer: Not only does he notice something
missing, he helps write a section to fix it!

As usual, I owe more than I can say to my first-class panel of official reviewers:

John Brewer Rob Mee

Kyle Brown Gerard Meszaros
Jens Coldewey Dirk Riehle

John Crupi Randy Stafford
Leonard Fenster David Siegel
Alan Knight Kai Yu

I could almost list the ThoughtWorks telephone directory here, for so many
of my colleagues have helped this project by talking over their designs and
experiences with me. Many patterns formed in my mind because I had the

\ 4

PREFACE

opportunity to talk with the many talented designers we have, so I have little
choice but to thank the whole company. :

Kyle Brown, Rachel Reinitz, and Bobby Woolf have gone out of their way to
have long and detailed review sessions with me in North Carolina. Their fine-
tooth comb has injected all sorts of wisdom, not including this particularly hei-
nous mixed metaphor. In particular I’ve enjoyed several long telephone calls
with Kyle that contributed more than I can list.

Early in 2000 I prepared a talk for Java One with Alan Knight and Kai Yu
that was the earliest genesis of this material. As well as thanking them for their
help in that, I should also thank Josh Mackenzie, Rebecca Parsons, and Dave
Rice for helping me refine these talks, and the ideas, later on. Jim Newkirk did
a great deal in helping me get used to the new world of .NET.

I've learned a lot from the many people working in this field with whom I’ve
had good conversations and collaborations. In particular I'd like to thank Col-
leen Roe, David Muirhead, and Randy Stafford for sharing their work on the
Foodsmart example system at Gemstone. I've also had great conversations at
the Crested Butte workshop that Bruce Eckel has hosted and must thank all
the people who attended that event in the last couple of years. Joshua
Kerievsky didn’t have time to do a full review, but he was an excellent patterns
consultant.

As usual, I had the remarkable help of the UIUC reading group with their
unique brand of no-holds-barred audio reviews. My thanks to: Ariel Gertzen-
stein, Bosko Zivaljevic , Brad Jones, Brian Foote, Brian Marick, Federico Bal-
aguer, Joseph Yoder, John Brant, Mike Hewner, Ralph Johnson, and Weerasak
Witthawaskul.

Dragos Manolescu, an ex-UTUC hitman, got his own group together to give me
feedback. My thanks to Muhammad Anan, Brian Doyle, Emad Ghosheh, Glenn
Graessle, Daniel Hein, Prabhaharan Kumarakulasingam, Joe Quint, John Reinke,
Kevin Reynolds, Sripriya Srinivasan, and Tirumala Vaddiraju.

Kent Beck has given me more good ideas than I can remember. But I do remem-
ber that he came up with the name for Special Case (496). Jim Odell was respon-
sible for getting me into the world of consulting, teaching, and writing—no
acknowledgment will ever do his help justice.

As I was writing this book, I put drafts on the Web. During this time many
people sent me e-mails pointing out problems, asking questions, or talking about
alternatives. These people include Michael Banks, Mark Bernstein, Graham Ber-
risford, Bjorn Beskow, Bryan Boreham, Sean Broadley, Peris Brodsky, Paul
Campbell, Chester Chen, John Coakley, Bob Corrick, Pascal Costanza, Andy
Czerwonka, Martin Diehl, Daniel Drasin, Juan Gomez Duaso, Don Dwiggins,
Peter Foreman, Russell Freeman, Peter Gassmann, Jason Gorman, Dan Green,

Preeace v

Lars Gregori, Rick Hansen, Tobin Harris, Russel Healey, Christian Heller, Rich-
ard Henderson, Kyle Hermenean, Carsten Heyl, Akira Hirasawa, Eric Kaun,
Kirk Knoernschild, Jesper Ladegaard, Chris Lopez, Paolo Marino, Jeremy
Miller, Ivan Mitrovic, Thomas Neumann, Judy Obee, Paolo Parovel, Trevor
Pinkney, Tomas Restrepo, Joel Rieder, Matthew Roberts, Stefan Roock, Ken
Rosha, Andy Schneider, Alexandre Semenov, Stan Silvert, Geoff Soutter, Volker
Termath, Christopher Thames, Volker Turau, Knut Wannheden, Marc Wallace,
Stefan Wenig, Brad Wiemerslage, Mark Windholtz, Michael Yoon.

There are many others who gave input whose names I either never knew or
can’t remember, but my thanks is no less heartfelt.

My biggest thanks is, as ever, to my wife Cindy, whose company I appreciate
much more than anyone can appreciate this book.

S

Colophon

This is the first book that I wrote using XML and related technologies. The
master text was written as a series of XML documents using trusty TextPad.
also used a home-grown DTD. While I was working I used XSLT to generate
the web pages for the HTML site. For the diagrams I relied on my old friend
Visio using Pavel Hruby’s wonderful UML templates (much better than those
that come with the tool. I have a link on my Web site if you want them.) I wrote
a small program that automatically imported the code examples into the out-
put, which saved me from the usual nightmare of code cut and paste. For my
first draft I tried XSL-FO with Apache FOP. At the time it wasn’t quite up to the
job, so for later work I wrote scripts in XSLT and Ruby to import the text into
FrameMaker.

I used several open source tools while working on this book—in particular,
JUnit, NUnit, ant, Xerces, Xalan, Tomcat, Jboss, Ruby, and Hsql. My thanks to
the many developers of these tools. There was also a long list of commercial
tools. In particular, I relied on Visual Studio for .NET and on IntelliJ’s wonder-
ful Idea—the first IDE that’s excited me since Smalltalk—for Java.

The book was acquired for Addison Wesley by Mike Hendrickson who,
assisted by Ross Venables, has supervised its publication. I started work on the
manuscript in November 2000 and released the final draft to production in
June 2002. As I write this, the book is due for release in November 2002 at
OOPSLA.

Sarah Weaver was the production editor, coordinating the editing, composi-
tion, proofreading, indexing, and production of final files. Dianne Wood was

PREFACE

the copy editor, carrying out the tricky job of cleaning up my English without
introducing any untoward refinement. Kim Arney Mulcahy composed the book
into the design you see here, cleaned up the diagrams, set the text in Sabon, and
prepared the final Framemaker files for the printer. The text design is based on
the format we used for Refactoring. Cheryl Ferguson proofread the pages and
ferreted out any errors that had slipped through the cracks. Irv Hershman pre-
pared the index.

About the Cover Picture

During the couple of years I spent writing this book a more significant construc-
tion project was going on in Boston. The Leonard P. Zakim Bunker Hill Bridge
(try fitting that name on a road sign) will replace the ugly double-decker that
now carries Interstate 93 over the Charles River. The Zakim bridge is a cable-
stayed bridge, a style that hasn’t been widely used in the U.S. so far, but is very
popular in Europe. The Zakim bridge isn’t particularly long, but it is the
world’s widest cable-stayed bridge and also the first U.S. cable-stayed bridge to
have an asymmetric design. It’s a very beautiful bridge, but that doesn’t stop me
from teasing Cindy about Henry Petroski’s conjecture that we are due for a
major failure in a cable-stayed bridge soon.

Martin Fowler, Melrose, Massachusetts, August 2002
bttp:/fmartinfowler.com

Contents

T 2 Xv
Who ThisBook IsForcvvniiivniieinnnnenaanens xviii
Acknowledgments i, xix
Colophon e e xxi

Introduction. ittt iiianana Ceseiasaaas N 1
Architecture ciiiiinne ettt i 1
Enterprise Applications e 2
Kinds of Enterprise Application, 5
Thinking About Performance 6
Patternsttt e i e 9

The Structure of the Patterns v, 11
Limitations of ThesePatterns 13

PART 1: The Narrativesccivuitiereeereneennannenns 15

Chapter 1: Layeringocvvueeinnuenneeneneneneeannenennnns 17
The Evolution of Layers in Enterprise Applications 18
The Three Principal Layers 19
Choosing Where to Run Your Layers 22

Chapter 2: Organizing Domain Logic. ceieresaaaan Ceeisean 25
MakingaChoicecoviiuiiieiiii i, 29
ServiceLayercviiit it e, 30

Chapter 3: Mapping to Relational Databases. ce... 33
Architectural Patterns i, 33
The Behavioral Problem 38

CONTENTS

ReadinginDatacocitiiiiiiiininneiarnnenannsans 40
Structural Mapping Patterns i iiirann 41
Mapping Relationships, 41
Inheritance oiiie i e e e 45

Building the Mapping cciieiiiiiiinininnnnn, 47

Double Mappingt 48
UsingMetadatac0iiinininiiiiii it 49
Database Connectionsovuiiieiiinvnenrnnenn.. 50

Some Miscellaneous Points 52
FurtherReading 53
Chapter 4: Web Presentation ovvtinieinennniiienenennnnnn. 55
View Patternst e e 58

Input Controller Patterns, 61
FurtherReading oo ... 61
Chapter 5: Concurrency (by Martin Fowler and David Rice). 63
Concurrency Problems 64
Execution Contextsovuuiiiininnnnnennnennnnn.. 65
Isolation and Immutability 66
Optimistic and Pessimistic Concurrency Control 67
Preventing InconsistentReads 68

Deadlocks 70
Transactions oot 71

ACID . e e 71
Transactional Resources 72

Reducing Transaction Isolation for Liveness 73

Business and System Transactions 74

Patterns for Offline Concurrency Control 76
Application Server Concurrencyuueeuruunnn.... 78
FurtherReading 80
Chapter 6: Session State.............. ettt ... 81
The Value of Statelessness00 0., 81

Session Statet i 83

Wiays to Store Session Stateo.o . 84
Chapter 7: Distribution Strategieso0veeeereennnnnnnn... 87
The Allure of Distributed Objects 87

Remote and Local Interfaces

CONTENTS

Where You Have to Distribute o, 90
Working with the Distribution Boundary 91
Interfaces for Distributiono, 92
Chapter 8: Putting It All Togethercc00itiiiiiniisnnnsens 95
Starting with the Domain Layer 96
Down to the DataSource Layerc0iiivinnnn.. 97
Data Source for Transaction Script (110) 97
Data Source for Table Module (125) 98
Data Source for Domain Model (116) 98
The Presentation Layercviiiiienennnnennennnn.. 99
Some Technology-Specific Advice 100
Javaand J2EE 100
NET o e e e e 101
Stored Proceduresciiiiini i, 102
Web Servicesottt e e 103
Other Layering Schemesccoivvn..... 103

PART 2: The Patterns . . .o vvvvvrrrennnronnceeanenenenses. 107

Chapter 9: Domain Logic Patternsovvvnrnvnennnsn, fesenans 109
Transaction Script ov vttt e e 110
HowltWorks 110
WhentoUseltcoooiiiiiiin i 111
The Revenue Recognition Problem 112
Example: Revenue Recognition (Java) ‘ 113
DomainModel 116
HowltWorks i, 116
WhentoUseltcoooiiiiiin ... 119
FurtherReadingo .., 119
Example: Revenue Recognition (Java) 120
TableModule, 125
HowltWorks i, 126
WhentoUselt oo, 128
Example: Revenue Recognition with a Table Module (C#) 129
Service Layer (by Randy Stafford) 133
HowIt Worksccoiiiininiiienin e, 134
WhentoUseltcooiiviuiinannn., 137

CONTENTS

FurtherReadingo, 137
Example: Revenue Recognition (Java) 138
Chapter 10: Data Source Architectural Patterns. ceseses. 143
Table Data Gatewayc.c.iiuiiininennnnnannns 144
HowltWorkscocuiiiiiii i, 144
WhentoUselt. i iiiiiiiiinnen. 145
FurtherReadingciiiiiiiiriiiiiniiniannnn. 146
Example: Person Gateway (C#) 146
Example: Using ADO.NET DataSets (C#) 148
RowData Gatewaycoivtiiintttetiinnnnnnnnnnn. 152
HowlItWorks i 152
WhentoUseIt........covitiiiininiiiiiiiia... 153
Example: A Person Record (Java)covvevevnnn... 155
Example: A Data Holder for a Domain Object (Java) 158
ActiveRecord i 160
HowItWorkscooiiiiiiniiii .. 160
WhentoUseIt......ooovviiiiiiininiiniie ., 161
Example: A Simple Person (Java)coovennenn.... 162
DataMapper i i e e e e 165
How It Workst e, 165
WhentoUselIt...... ..., 170
Example: A Simple Database Mapper (Java) 171
Example: Separating the Finders (Java) 176
Example: Creating an Empty Object (Java) 179
Chapter 11: Object-Relational Behavioral Patterns 183
Unitof Work i it i 184
HowlItWorksoiiiiiii ., 184
WhentoUselt. iiiininennnnn. 189
Example: Unit of Work with Object Registration (Java)
(byDavidRice)cccoiiieieinnnnnnnnnnn, 190
Identity Mapo 195
HowltWorks 195
WhentoUselt.....coovvninnnniiin e, 198

CONTENTS

LazyLoadottt et ie e 200
How It Worksciviiiiiiiiiii i iiiiiniiinenen, 200
WhentoUselItointir ittt iieiniieanna 203
Example: Lazy Initialization (Java) 203
Example: Virtual Proxy (Java)coovuinn... 203
Example: Using a Value Holder (Java) 205
Example: Using Ghosts (C#) 206

Chapter 12: Object-Relational Structural Patterns 215

Identity Field i, 216
HowlItWorksoiiiiininin i, 216
WhentoUseltooiuiiiinin it eieeennnannns 220
FurtherReading 221
Example: Integral Key (C#)c...... 221
Example: Using a Key Table (Java) 222
Example: Using a Compound Key (Java) 224

Foreign Key Mappingoioiuinu. ... 236
HowlItWorks i i, 236
WhentoUselt 239
Example: Single-Valued Reference (Java) 240
Example: Multitable Find (Java) 243
Example: Collection of References (C#) 244

Association Table Mapping 248
HowltWorks i i, 248
WhentoUselt ..., 249
Example: Employees and Skills (C#) 250
Example: Using Direct SQL (Java) 253
Example: Using a Single Query for Multiple Employees (Java)

(by Matt Foemmel and Martin Fowler)................. 256

Dependent Mappingoooveinnnneeennnnnnnn.. 262
HowltWorks v ... 262
WhentoUseltcoovuuvinnuniinn e, 263
Example: Albums and Tracks (Java) 264

Embedded Value 268
HowltWorks i 268

WhentoUselt ... 268

