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Preface

Knowledge: A little light expels much darkness
Bahya ibn Paquda, Duties of the Heart.

Since this book was first published there have been major advances in
LSI technology, in particular the developments in microprocessors and
semiconductor memory. However, though the emergence of cheap and
reliable microcomputers on a chip will certainly revolutionize computer
systems architecture, the basic structure of the microcomputer itself
still follows very closely the original principles of digital computer
design. In fact in some respects it is rather like going back to the halcyon
days of first generation computers!

Consequently, the fundamental principles described in the
original edition of this book are still very relevant, and some aspects,
such as machine-code programming, micro-programming and inter-
facing, have acquired even greater importance.

It is important to realize that the computer in its microcircuit
form, has now become a system component which can be used to con-
struct complex computer architectures. It is this aspect coupled with the
availability of cheap semiconductor memory, that will change the face of
computer engineering. The concepts of distributed and parallel proces-
sing, up to now barely being economically viable, will soon become
standard practice. Moreover the structure of main frame computers as
we know them today will drastically change, being replaced by dedicated
microcomputer configurations performing both hardware and system
software functions.

It is from this point of view that the second edition of the book
has been written. The fundamental aspects of digital computers have
been retained whilst considerable emphasis has been placed on parallel
and distributed computing systems, including associative processing and
the implementation of microcomputer based systems. Each chapter has
been thoroughly revised and updated and the contents, where relevant,
have been reorientated to take into consideration the effect of semi-
conductor technology. In particular important topics like stack proces-
sing, pipelining, distributed processing, interfacing, interrupt procedures
and semiconductor storage systems have been completely revised and
extended to include current thinking in these areas.

My sincere thanks must be recorded to all those readers of the
first edition who spurred my enthusiasm to undertake this revision and
to Molly Richardson, Betty Clark and Sue Lovett who unscrambled my
manuscript into readable text.
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The stored program principle

1.1 Introduction

There are three basic types of computer currently in use — the analogue
computer, the digital computer, and a combination of both called the
hybrid computer. In this book we shall be concerned primarily with
the digital computer, but before we start it is worthwhile describing the
characteristics of all three types.

The analogue computer represents the variables (and constants)
in its calculations by physical quantities (usually voltage and time),
hence the name ‘analogue’. The slide rule is a very simple example,
where ‘length’ is used to represent the actual values in a calculation. The
accuracy of such calculations is of course limited by the accuracy with
which we can measure the physical quantities involved. Usually the com-
puting reference voltage is +10 V, and voltmeters, oscilloscopes and
X-Y plotters are used to measure and record the values of the variables,
generally to within an accuracy of 0-19 to 19.

The solution to a mathematical or systems problem is obtained by
setting up an analogue of the mathematical equations (or by simulating its
transfer functions) using operational amplifier circuits functioning as
adders, sign changers, integrators, and so on.! Thus each integration or
addition, etc., in an equation is performed simultaneously by separate
operational amplifiers working in parallel. Consequently the answerisin a
continuous form; that is, the analogue computer produces a general
solution to an equation which is normally displayed as a graph of voltage
against time. The time required to produce a solution depends on the
problem, but the computer can be suitably time-scaled (for example to
allow for the response of the output equipment) to work either in
machine or real-time. This has considerable advantages particularly in
real-time problems when actual equipment can be included in a simula-
tion. Another advantage is the rapport that exists between the designer
and the machine, since the parameters of a problem may be easily changed
by adjusting potentiometers and the results observed instantaneously.

The digital computer, on the other hand, represents its variables
in a quantized or digital form. Thus numbers must be represented by
using a discrete state or condition to represent each symbol (0-9 for
decimal numbers). For example, in a decimal counting system (a car
mileometer for example) gear wheels with ten teeth may be used to repre-
sent a decade, each cog corresponding to a symbol. A complete revolution
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The stored program principle

Table 1.1

Examples of the binary notation
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Introduction

of a gear wheel causes the next gear wheel to enmesh so producing the
effect of a carry. To perform the same task electronically we would need
either a ten-state device, such as a decimal counter, or a specially con-
structed device using, in the simplest sense, ten on/off switches each
connected to a lamp to represent one decade. As naturally occurring ten-
state devices are very rare, and when specially made tend to be very
expensive in components, it would appear obvious to use a number
system with fewer symbols. Consequently in electronic digital computers
the binary system, employing the two symbols 0 and 1 only, is used to
represent numbers. This is a convenient and economic engineering solu-
tion since there are numerous examples of simple two-state devices
(switches — on/off ; transistors — conducting/cut off) which may be used
to represent the symbols. Number systems may be defined mathematic-
ally in terms of the polynomial:

N=aq +a,,¢" "+ -+ aq +aw’ +a_iq""

+ - ta_ g "

where N is a positive real number, ¢ a positive integer radix, and a repre-
sents the symbols. Thus, for example, the decimal number 27-5 may be
expressed in terms of this polynomial as:

(27-5) decimal = 2 x 10" + 7 x 10° + § x 107"

and (275 binary =1 x 2*+ 1 x 2+ 0 x 22+ 1 x 2!
+1x2°+1x27!

Table 1.1 shows further examples of the binary system of notation; note
that the binary (or radix) point occurs after the last positive index of the
radix, that is, ¢°. As a consequence of using the binary notation the
accuracy of a calculation depends on the number of binary digits (bits)
used to represent the variables. Using a 10-bit word we can expect an
accuracy of 1 part in 103, the accuracy may be increased by using more
bits, but one must be careful not to exceed the accuracy of the original
data. It is pointless expressing input data, accurate to only 2%, to 1 part in
104!

We have said that the analogue machine works in a parallel mode
producing an instantaneous solution. In contrast the digital machine
works sequentially. Thus integrations which are performed auto-
nomously in separate units in an analogue machine must be carried out
one after the other in a digital computer. Furthermore the result is a
numerical one, giving a particular solution to an equation rather than a
general one. Thus to produce a general solution to an equation would
require many iterations of the digital computing routine. Consequently
in some problems, particularly real-time applications, the digital compu-
ter is too slow!

When speed and accuracy are required the hybrid computer is
used; this incorporates some of the advantages of analogue and digital
computers in one machine. In particular, iterative operations may be per-
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The stored program principle

formed, enabling a complete family of curves to be produced, by auto-
matically changing the parameters of an equation using digital control
techniques. Alternatively, analogue and digital computers may be used
in conjunction, with the analogue machine providing overall control and
calling upon the digital machine for function and delay generation, para-
meter changing, and so on. An alternative approach is to use a digital
computer to simulate the operations normally executed by the analogue
machine but to employ analogue sub-routines to perform integration or
the solution of differential equations when high speed is required, as for
example in real-time working. Another advantage of hybrid operation is
that the preparation time required to program a problem (solutions are
patched in an analogue computer by interconnecting individual sub-
units) can in general be reduced. However, it is the author’s contention
that hybrid computer systems are a temporary means of overcoming the
present limitations of digital computers; in the future when digital com-
puters become faster (including fast storage systems) large analogue and
hybrid computers may well become obsolete.

Digital computers are now being applied in all branches of tech-
nological and commercial endeavour. In particular, computers have been
used to manufacture ice-cream, gas, and steel; to control road, rail, and
air traffic; to set up newspaper type; to supervize stock control and insur-
ance records; and to design engineering systems. Moreover the basic
principle of digital computers, the stored program concept, has been
employed in the design of many special purpose machines, such as tele-
phone switching networks, and TV studio lighting.

More recently the development of cheap LSI microprocessors
and microcomputer systems has revolutionized the design of digital
systems. Computer techniques are now freely available to all engineers,
who have employed them prodigiously in many different applications,
particularly instrumentation and real-time control. Moreover, cheap
programmable calculators, multi-function digital watches and even ‘do
it yourself’ computer kits are now available for the public at large.

The object of this book is to explain the theory and design philo-
sophy of digital computer systems. Not necessarily so as to enable people
to design computers (very few will do this) but with the broader objectives
of using computers or computer-like machines as modules in a large
digital system. To achieve these objectives it is essential to know how to
use the machines (the software design) as well as to understand their
engineering and components (the hardware design).

1.2 Basic principles

The fundamental principles of organizing a digital computer were first
set forth by Babbage? in the early part of the nineteenth century. As a
result of building calculating machines to compute mathematical tables,
Babbage conceived the idea of an Analytical Engine and, though it was
never built, laid the foundation for modern automatic computing
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Basic principles

machines. These ideas were later extended, though not changed in prin-
ciple, by Von Neuman® who applied them to the design of an actual
machine.

A digital computer consists of the following functional elements:

A store or memory for numbers (operands) and instructions.

An arithmetic unit, where arithmetical operations are performed on the
operands.

The control unit, a device for controlling the logical operations of the
machine, and causing them to take place in the correct sequence.

The input/output unit, used to transfer data into and out of the com-
puter store.

Figure 1.1 shows a block schematic for a typical digttal computer.

In general a numerical problem is solved, using a digital computer,
by first breaking down the calculation into a number of discrete arithmetic
operations (such as add, subtract) which are performed on the binary
operands. These operations, together with any necessary organizing
functions, such as input, output, register transfers, and so on, are then
arranged to form a program of instructions for the computer. This pro-
gram, suitably coded in a binary form, is written into the computer store
using the input and control units. Instructions are read down from the
store in sequence and obeyed, again under the action of the control unit,
using the arithmetic unit as and when required. The store contains both
program and data, plus ‘working-space’ and storage for results. The final
operation is to output the results of the calculation via the output unit.
Note the similarity between machine and manual computation. In the
latter case a desk calculating machine could be regarded as the arithmetic
unit, books of tables become the computing procedure and note-pads the
store, and the control unit would of course be the human operator.

The philosophy of storing the program instructions as well as the
operands, that is, the stored program concept, is the basic reason for the
power of the digital computer. This is because, as we shall see later,
the instructions can be treated as data and arithmetic operations may be
performed on them in the normal way.

1.3 Instruction and number representation

In a digital computer the program instructions and operands (variables
and constants) are stored together in the same storage unit. Each location
in the store contains the same number of bits (called a computer word)
and is allocated an absolute, uniquely identifiable address. The computer
words, the length of which can vary from 8 to 32 bits for practical
machines, are used to represent both the computer instructions and the
data, see Figs 1.2 and 1.3. In the simplest case the instruction word
would be divided up into an order and an address section plus some

5
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Instruction and number representation

control bits. The order part of the word has sufficient bits to allocate a
unique binary or octal code to all the machine-code orders, likewise
the range of the address section is such as to enable most of the store
locations to be specified directly. Assuming an 18-bit wordlength, we can
address 2!'° (=1024) store locations, and represent up to 2° (=32)
machine-code orders. The function of the three control bits, called the
indirect address, modifier, and sector bits respectively, will be ex-
plained in the next chapter.

Numbers are generally represented in the computer using fixed-
point binary fractions, such that —1 < x < 1, where x is the binary
number; negative numbers normally take the 2’s complement form
with the most significant digit indicating the sign (see Chapters 2 and 5).
For representing instructions, however, the pure binary notation is too
cumbersome to use. This is because of the large number of digits needed
to represent a number and the necessity to convert from decimal to
binary, and vice versa, when writing instructions or inspecting stored
program in the computer. Consequently, the octal system of notation is
used, which, since it is based on a radix of eight, is easily converted to
binary and has the advantage of requiring fewer digits for number repre-
sentation. For example:

(1467),, = (10110111011), = (2673)4
The octal number 2673 may be represented in polynomial form as:
2 x8 +6x8 +7x 8 +3x 8 =(1467)4,

The conversion from octal to binary is easily accomplished by writing
down the pure binary equivalent of each octal digit, for example:

2 4 6 6 7
(24667)g = (10 100 110 110 111),

The reverse process of converting from binary to octal follows directly
from above. '

A typical, but minimal, set of machine-code orders is shown in
Table 1.2, the orders are divided into three groups consisting of:

(a) those orders which require the address of a store location to be
specified, for example in the add, subtract orders, etc.;

(b) orders which do not require any form of address (ZA orders) and
hence all 18 bits may be used to specify an order; examples of this type of
order are the stop instruction, exchanging register contents, and incre-
menting registers;

(c) orders which do not require a store address but do need additional
information to be specified (IOS orders), for example the shift orders
which must include the number of places (n) to be shifted, and the
input/output instructions.



Table 1.2
Typical machine-code order set

(a) Specified address instructions (SA)

Code in Mnemonic Description of order

octal

00 " Reserved for ZA orders

01 )

02

03

04 \  Spare

05

06

07 )

10 Reserved for IOS orders

11

12 Spare

13

14 ADDM Add contents of address specified to modifier

15 FETM Fetch contents of address specified to modifier

16 STRM Store contents of modifier in address specified

17 LINK Store contents of instruction register in address specified
and jump to address specified +1

20 ADD Add contents of address specified to accumulator

21 SUB Subtract contents of address specified from accumulator

22 FET Fetch contents of address specified to accumulator

23 STR Store contents of accumulator in address specified

24 COL AND accumulator with contents of address specified

25 OR OR accumulator with contents of address specified

;2 } Spare

30 IMP Jump to address specified

31 JMPN Jump to address specified if accumulator negative,
otherwise take next instruction in sequence

32 JMPP Jump to address specified if accurnulator positive,
otherwise take next instruction in sequence

33 IMPO Jump to address specified if accumulator zero,
otherwise take next instruction in sequence

34 IMPM Jump to address specified if modifier zero,
otherwise take next instruction in sequence

35 MULT Multiply accumulator by contents of address specified,

resulting 36-bit product contained in accumulator
and X-register

36 DIV Divide 36-bit dividend, contained in accumulator
and X-register, by contents of address specified
37 EXCO Perform exclusive OR function between accumulator

and contents of address specified




(b) Zero address instructions (ZA)

Code in Mnemonic  Description of order
octal
000000 STOP Stop the computer
000001 COML Form 2’s complement of accumulator
000002 NOOP No operation
000003 ENI Enable interrupts
000004 INI Inhibit interrupts
000005 EXAM Exchange contents of accumulator and modifier register
000006 INCM Add +1 to modifier register
000007 EXAC Exchange contents of accumulator and X-register
000010 EXIO Exchange contents of accumulator and input/output
registci
000011 CLRA Clear accumulator
000012
Spare
017777

(¢) Input/output/shift instructions (I0S)

Code in Mnemonic Description of order

octal

200 SLL Logical shift left of the accumulator n places

201 SRL Logical shift right of the accumulator n places
202 SLA Arithmetic shift left of the accumulator n places
203 SRA Arithmetic shift right of the accumulator n places
204 EAS End-around shift of the accumulator n places

205 INA Input word to accumulator

206 OTA Output word from accumulator

207

217

Spare




