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Preface

This volume is a collection of 18 refereed papers presented at The Fourth
International Workshop on Scientific Computing and Applications held on
June 20-23, 2005 at Shanghai Jiaotong University, China, co-organized with
Shanghai E-Institute for Computational Science. The former workshops of
the series were held at City University of Hong Kong, in December 1998 and
October 2003, and Banff, Alberta, Canada in May 2000, respectively.

The aim of this series of workshops is to bring together mathematicians,
applied scientists and engineers working in the field of scientific computing
and its applications, and to provide a forum for the participants to meet and
exchange their ideas and experiences in the research work.

In this year, more than one hundred people from different countries attended
the four day event. The workshop includes 11 plenary talks and a number of
contributed talks, which cover a wide range of topics in the field of scientific
computing and its applications.

This workshop was supported by Shanghai Jiaotong University and Shang-
hai E-Institute for Computational Science. The editors wish to thank Depart-
ment of Mathematics of Shanghai Jiaotong University for its contributions to
the success of the workshop. We have also received significant help from mem-
bers of the Scientific Committee and Organizing Committee. We are grateful
to all authors for their contributions, to referees for reviewing the papers, and
to Professor Tian Hong-jiong for preparing this volume.

October, 2005  Ben-yu Guo
Shanghai Normal University

Zhong-ci Shi
Chinese Academy of Scienpes
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Recovery of Boundaries and the Boundary
Conditions for Multiple Obstacles from the Far-field
Pattern
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We consider an inverse scattering problem for multiple obstacles D =
U;-\_Lle C R® with different types of boundary for D;. By constructing an
indicator function from the far-field pattern of scattered wave, we can firstly re-
construct the shape of all obstacles, then identify the type of boundary for each
obstacle, as well as the boundary impedance in the case obstacles have Robin-
type boundary condition. The novelty of our probe method comparing with the
existing probe method is that we succeeded in identifying the type of boundary
condition for multiple obstacles by analyzing the behavior of both the imaginary
part and the real part of the indicator function.

Keywords: Inverse scattering, probe method, uniqueness, indicator

AMS Subject classification: 35R30, 35J05, 76Q05

1. Introduction

Let D be a bounded domain in R3 such that D = UN V.\D;j, D; N D; =
O (i # 7). Each Dj; is a simply connected domain with 02 boundary 0D;.
The scattering of time-harmonic acoustic plane waves by the obstacle D Wlth
some boundary is modelled as an exterior boundary value problem for the
Helmholtz equation. That is, for a given incident plane wave u'(z) = ethzd,
de 8% ={&e R3: |¢| =1}, the total wave field v = u® +u® € HL (R?\ D)
satisfies




Au + k?u =0, in R\ D
Bu(z,t) =0, on 0D SR
ou®

s —0 (L) ;=
ar—ku—O(r),r—|xl——>oo

where B is a boundary operator corresponding to different types of the obstacle
D, that is,

u if 0D; is sound-soft,
Bu = g—:—j— if 0D; is sound-hard, (1.2)

% +io(z)u if OD; is Robin-type,

where v is the unit normal on 9D directed into the exterior of D, o(z) > 0 is
the boundary impedance coefficient. By the results in [5], we know that there
exists a unique solution for the forward scattering problem (1.1).

For the incident field ui(z) = €4, the far-field pattern u®(6,d) can be
defined by

eik[a:[

|1

{uw(e, d)y+ 0O (—1—>} , lz| — oo,

u®(z) = =

where 6,d € S2.

Generally, the inverse scattering problem corresponding to (1.1) is to iden-
tify the boundary 0D and also o(x) in case of Robin-type boundary, from
a knowledge of far-field pattern. If D is just one obstacle, then identifying
0D for each kind of boundary conditions has been discussed thoroughly. For
example, if D is sound-soft (Dirichlet boundary condition on D) or sound-
hard (Neumann boundary condition on &D), the problems have been studied
by many researchers, see [3], [6], [8], [9], [11], [14], [18]. In the case of ob-
stacle with Robin-type boundary, the problem of reconstructing o(z), when
0D is given, has also been studied , see [4], [6], [16], [17]. For the inverse
scattering problem of determining both 8D and boundary impedance, an ap-
proximate determination (or reconstruction) of the shape of D and boundary
impedance was discussed in [20] by using the asymptotic behavior of the low
frequency scattered waves associated with three different incident waves (or
frequencies). In [13], one numerical method is proposed to determine both 8D
and impedance o(z). In [1], the authors gave a uniqueness and reconstruction
formula for identifying D and the impedance for a Robin-type obstacle from
the far-field pattern, by applying the probe method introduced by M. Ikehata
(see [8], [9], {10], [11] and [12] for example). Moreover, it has also been no-
ticed that the probe method, as well as the point-source method proposed in
[19], can be applied to determine the boundaries of multiple obstacles, if their



boundary types are the same (sound-soft or sound-hard). Now, we propose
a new problem: if there are many obstacles with different types of boundary
such as sound-soft, sound-hard, as well as Robin-type, can we still identify
their shapes and locations as well as the type of boundary for each obstacle?

This is the main topic of this paper. Our answer to this problem is “yes”.
More precisely, our result can be stated as follows.

Theorem 1.1. Let D be a bounded domain consisting of finite obstacles D;
(j =1,2,---,N), namely, D = UJ 1Dj. We assume that each obstacle Dj is
simply connected bounded domain with C? boundary 8D; and D;ND; = @ for
i # j. For given incident plane waves u'(z,d) = e*®¢, consuier the followmg
scattering problem for total wave field u(z,d) = u'(z, d) + v*(z, d):

Au + k*u = 0, in R3\ D
gju(x, t) =0, on0D;,57=1,2,--- N (1.3)
uS

1 :
— 9 § — —_ = e
pe tku® = O (r) , = || 00,

where B; is one of the boundary operator in (1.2) for j = 1,2,.--, N. Assume
that D C Q for some known sphere  and 0 < oi(x) e C (8D3) for Robin-type
obstacles D;. If there exists at least one Robin-type obstacle, then from the
far-field pat‘cern u®(0,d) for all §,d € S?, we can

(1) determine the number of obstacles N,

(2) reconstruct dD; for j =1,2,.-- N,

(3) identify the type of each obstacle D,

(4) reconstruct o;(z) for the Robin-typed obstacles D;.

Our main tool to deal this problem is still the probe method. This method
gives a reconstruction formula for the shape and location of an obstacle by us-
ing the indicator function and analyzing its behavior. However, there are some
new ingredients in this paper. In the case of multiple obstacles, we not only
have to determine the shape and location of each obstacle, but also we have to
determine the number of obstacles and identify the type of each obstacle. This
is the major and important difference between the multiple-obstacle inversion
and single-obstacle one. Especially, we have to extract some characteristics
of the indicator function such that we can distinguish sound-hard obstacles
and obstacles with Robin-type boundary, since in most cases, we can consider
the Neumann boundary as the special case of Robin boundary with o(z) = 0.
Then the most important ingredient of this paper is that we succeeded in pro-
viding a method distinguishing sound-hard boundary and Robin-type bound-
ary. More precisely, we can determine the positions of obstacles and identify
sound-soft boundary from the real part of the indicator function, while dis-
tinguishing the sound-hard boundary from Robin-type boundary is done by




considering the imaginary part of the indicator function. In order to carry out
this, the most important and difficult thing is to rewrite the indicator function
in an appropriate form and analyze its behavior. The number of obstacles can
be obtained immediately when we get the whole image of all obstacles.

We will give a mathematically rigorous reconstruction formula for recover-
ing OD; for j = 1,2,---,N. Then the uniqueness of identifying D, and the
determination of number of obstacles from u*(d, 9) for all d,8 € S? becomes
obvious from the reconstruction. Since our reconstruction procedure is point
wise, it is enough to consider the case that D consists of 3 obstacles with
sound-soft, sound-hard and Robin-type boundary respectively, and to illus-
trate the reconstruction procedure for identifying the location and type for
each obstacle. This does not loose any generality. More precisely, we assume
that Dy, Dy, D3 are sound soft, sound hard and Robin-type, respectively. Once
we have identified the shape, location and type of each obstacle, we determine
o(z) := o3(z) on D3 by the moment method. So, henceforth we assume
N =3.

Our paper is organized as follows:

e Section 2: Preliminary results

e Section 3: Probe method

e Section 4: Moment method for determining o (x)
e Section 5: Some estimates

e Section 6: Singularity Analysis

2. Preliminary results

In this section, without the proofs, we give some known results for the probe
method, which are necessary for our paper.

Without loss of generality, we assume that D C B(0, %) for some constant
R > 0. We also assume that 0 is not a Dirichlet eigenvalue of A + k2 in
2 := B(0, R) for given k > 0.

Proposition 2.1. The scattered solution u®(z,d) for |z| > £ can be deter-
mined uniquely from u*(d, ).

eiklm—yl

Let G(z,y) = 4rlz—y] Pe the fundamental solution of the Helmholtz equa-
tion. For each y € R3\ D, we define E(.,y) € H! (R®\ D) as the solution
to

AE+K*E =0, in R3\ D
BiE(z,y) = -B;G(z,y), on 8D;, i=1,2,3

a—q—'k:E=O(l>, r = |z| — oo.
or r

2.1)
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Proposition 2.2. For z,y € 99, E(z,y), —WaaE(z,y) and %E(m,y) can
be determined from u™(d, 8) for all d,0 € S2.

The proof for D = D7 U Ds U D3 given here is an analogy to that given in
(1] for D = Ds.
Consider a solution u(zr) € H 1(Q \ D) to the following boundary value
problem
Au+k*u =0, in Q\ D
Bju(z,t) =0, on 0D;,j=1,2,3 (2.2)
u(z) = f, on 02
for given f € HY/?(09).

Since we have used D to indicate the closure of domain D, we will use  to
indicate the complex conjugate of complex number z in the sequel.

Lemma 2.3. If D3 # (), then there exists a unique solution to (2.2) for any
f e H'2(09).

Define the Dirichlet-to-Neumann map Asp , formally by
ou _
Aspo: f — o lon € H™'/2(090),

- where u € H'(Q\ D) is the solution of (2.2) for f € H'/2(89). In the next
Lemma, we show the relations between the far-field patterns and the Dirichlet-
to-Neumann map.

Lemma 2.4. Let u be the solution to (2.2) for f € HY/2(8Q). Then, g—:flaQ
can be obtained from f(z) and u*(d, ) for 6,d € S2.

From this lemma, we see that the original inverse problem can be restated as
the problem of reconstructing the shapes of the 3 obstacles and the boundary
impedance of D3 from the Dirichlet-to-Neumann map Agp .

Corresponding to the case D = ), we can formally define the Dirichlet-to-
Neumann map Agg : H'/2(0Q) — H~1/2(60) by

where ui(z) € H*(Q) is the solution to
{Aul + k2uy = 0, in 0

ui(z) = f € H/?(8%), on 8. 23)




Here note that by the assumption 0 is not the Dirichlet eigenvalue of the
operator A + k2 in , (2.3) is uniquely solvable.
The weak formula of Agg is given by

(Aoof, g) = /Q (Vg - Vo — k2urv)da, (2.4)

where u; is the solution of (2.3) for f € H1/ 2(090) and v € H 1(Q) satisfies
vlaq = g for g € H(8Q). For the solution u of (2.2) and the solution u; of
(2.3), we have

Lemma 2.5. Let v € H'(Q\ D) and u; € H(Q) be the solutions to (2.2)
and (2.3), respectively. There exists a constant C' = C' (k, R, 09) such that, for
all f e HY/2(0),

Jlw — UIHHI(Q\B) <C ”u1”H1(D) )

where o > 0 is a constant satisfying 0 < o(z) < o9, x € OD;.

The proof of Lemma 2.5 is almost the same as that given in [10].

3. Probe Method

Definition 3.1. For any non-self-intersecting continuous curve ¢ = {e(t); 0 <
t < 1}, if it satisfies ¢(0),¢(1) € 9Q and c(t) € N (0 <t < 1), then we call ¢
a needle in . : '

Definition 3.2. For any needle ¢ in 2, we call
t(e, D) =sup{0 <t < 1; ¢(s) € Q\Dforall 0< s < t}

geometric impact parameter(GIP). It is obvious that t(c, D) = 1 if ¢ does not
touch any point on dD.

From this definition, we know if a needle ¢ touches D, then t(c,D) < 1
and ¢(c, D) is the first hitting time, i.e., c(t(c, D)) € OD and c(t) € N \ D for
0 <t <t(c,D) if we consider ¢ as a time.

Since 2\ D is connected, we have a reconstruction algorithm for D in
terms of the geometric impact parameter and the needle, i.e.,

0D = {c(t); t = t(c, D), c is a needle and t(c, D) < 1}. (3.1)

Therefore, in order to reconstruct 0D, it suffices to consider the problem of
calculating the GIP for each needle from the Dirichlet-to-Neumann map.




Lemma 3.3. Suppose that T" is an arbitrary open set of 9€2. For each 0 <
t < 1, there exists a sequence {v, }32 in H1(f), which satisfies

_ Avy, + kv, =0
such that supp(vploq) C T and
Un — G(—c(t)) in  Hp(Q\c),
where ¢; := {c(t'); 0 <t/ < t}.

This result comes from the Runge approximation theorem, see [8], [9].

Remark 3.4. Usually the Runge approximation is not constructive, because
its proof is done by using the unique continuation and Hahn-Banach theo-
rem. However, for the Helmholtz equation, it is possible to make the Runge
approximation constructive by using the translation theory (see [7]).

It is obvious that v,|sq depends on c(t). We denote it by vy|an = fu(-, c(t)),
where fo(,c(t)) € HY2(0Q) and supp(fu(-,c(t))) C T.

Definition 3.5. For a given needle ¢ in Q and 0 < ¢ < 1, we define the
indicator function

e

’

I(t,¢) = lim (8op0 — Aog) (B, fulls ) (32)

“ whenever it is defined, where (-,-) is the pairing between H~1/2(3Q) and

HY2(80), ZAaD,a — Aoy) fn(-,c(a)‘ is the complex conjugate of (Agp, —
AO,O)fn('ac(t))'

Next we show that RT (t,c) and SI(t,c) (R, denote the real part and
imaginary part respectively) can be used to calculate GIP from which the
shapes and locations of 3 obstacles can be determined, and we can also identify
the type of each obstacle.

Theorem 3.6. For a given needle ¢(t) in €, it follows that
(A) t(c, D) =1 if and only if I(t,c) exists for all 0 <t < 1 and
sup |RI(¢,c)] < +oo.

S
(B) T = t(c, D) can be characterized by
(1) I(t,c) exists for all 0 < t < T and

sup |R(I(s,c))| < 400, for 0<t<T,

SSAY




(2) tlirjl} [RI(t,c)| = +oo.
(C) We can identify dD; for i = 1,2,3 by

i RI(t,c) = t(c, D)) € 0Dy,
t_)tl(lc,nb)_%I(,c) +00 <= ¢(t(c, D)) 1

lim RI(t,c)=—ccand lim SI(tc)
t—t(c,D)— t—t(c,D)—

< 400 <> c(t(c, D)) € 0Dq,

lim RI(t,c)=-occand lim SI(t,c)
t—t(c,D)— t—t(c,D)—

= 400 <= ¢(t(c, D)) € 8Ds.

Remark 3.7. The result (A), (B) give a criterion for the geometric impact
parameter t(c, D) in terms of the indicator function. It is easy to see that T
with the properties (1), (2) is given by

T =sup{0 <t<1; sup |RI(s,c)] < +oo}.
A
Furthermore, since 0D = 8D U8D, U 8D3, we can identify 8D; according to
(C).

&

Proof. For a given needle c(t), by Lemma 3.3, we know that there exists a
sequences {v,(z)} € H'(Q) which satisfies

{Avn +k?v, =0, in
Up = fn('ac(t))7 on 05 ; Supp(fn('ac(t))) cT,

and
v, — G(- — c(t)) in HL.(Q\¢) (n— ).
Let un(z) € HY(Q \ D) satisfy
Auy, + k*u, =0, in Q\ D
Biu, =0, ondD;, i=1,2,3 (3.3)
Up = fn, on 01,
then wp, = un — vnlg\p € H 1(Q\ D) satisfies
Aw, + k*w, =0, in Q\ D
Bjwy, = —Bjv,, ondD;, j=1,2,3
wy, =0, on 9N.
By Lemma 2.5 and Lemma 3.3, we know that, for ¢; N D = 0, it holds that
wp, —w in HY(Q\D), n —> 00, (3.4)




where w = w(z, ¢(t)) satisfies

Aw + k?w = 0, in Q\ D
Bjw = —B;G(- — ¢(t)), on 0D;, j=1,2,3 (3.5)
w =0, on 98

On the other hand, by the calculation in Section 6, we have two kinds of

A

expressions for ((Asp,e — Aog)fn, fn), 1€,

—————

(om0 = Rog)Fal el ()
= — wp|” — k%w z — un|? — Ko
== [Vl = Rl — [ (00— K2Jn )

+ (2i0'vn'u7n =+ i0|0n|2 + ’ialwnlz) ds
8D3

+ . [(vn 5y~ Un 61/) + <'vn 5 9, ds. (3.6)

N

{(Aop,s — Aoo)fn( c(t)), fal-,c(t)))
/ Ianlz-—kzlwn ) m+/ Ianlz-kzlv | )d:c

/ [ 8vn Gvn d
8Dy

Let n tend to infinity in (3.6). Then, by (3.4), we have
~1(t,9)= [ {VG(: ~ ) - KIG( - c(t)) P}
D
+ [ {1vuf - PluPlde
o\D
i / o(@){|G(- — () + |2 }ds — 2 / o(z)@Gds
8D3 8Dz
ow BG oG _dw
We first prove (A). If t(c, D) = 1, then, by the definition of ¢(c, D), we know

that c(t) does not touch D, i.e. c(t) € \ D for 0 <t < 1. It is easy to verify
that

504 [ ar:” *“n'é:f‘“’

l'la

(3.7)

sup |RI(t,c)| < +o0.

SN




10

The converse is true if we prove (B). So, let’s go to the proof of (B). Let
t(c,D) < 1 and zg = c(t(c, D)) € 8D. Then, it is easy to see that we only
have to prove lim;_ py— |RI(¢,c)| = +oo. This is included in the proof of
(C). So the rest of the argument is devoted to the proof of (C).

Likewise before, since c(t) € Q\ D (0 < t < t(c,D)), we have
supg<s<t|RI(s,¢)| < +oo for 0 <t < t(c, D). Now observe that

—R1(t,0)= [ [VG( - () ~ K*IG(- - e(t))lde

+ /Q UVl =Rl +2 /a  o@SEG(- — e(t))ds

ow  _8G _8G _ow
> / IVG(-—c(t))[2dz—k? / 1G(-—e(t))Pdz—k? / |wldz
D D o\D _

+2 /a , o@S@C( - o(t)))ds

ow  _0G oG  _dw
% [/wl (GE ~ DG - w5;) ds] . (3.9)

According to the result of singularity analysis about w(z, zo) and G(z —z¢)

for g € 0D, we have from (3.9),
.~ t%ggj)_ R(1(t,c)) = —o0,

if = 2,3. On the other hand, consider the real part of the limit of (3.7) as
n — oo. It is easy to find that the real part will tend to +oco when c¢(t) — 8Dy,
since [, |VG(- — ¢(t))|?dz will blow up, while the integrals on the boundary
are clearly bounded and L? integral of w is bounded. These facts imply that
we can distinguish the sound-soft boundary D; from the other two kinds of
boundaries (sound-hard and Robin-type). Now we want to distinguish 8D,
and 0Dj3 furthermore. For this purpose, we need to consider the imaginary
part of (3.7). In fact, it yields from (3.6) that

—_—

%(((Aao,af Ao,0) fry Fn)) = /a . o ()| un |?ds. (3.10)

Now we estimate the behavior of the imaginary part of indicator function.
Remind our previous notations, we get

—

-~

Jim S(((Aop,o :Ao,o)f; fn))
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= lim o(z)|un|2ds
n—00 /9D,y

= lim o(z)|v, + wy|?ds
n—00 Jgp,

- / o(2)|(G(@ — c(t))) + w(z, c(t))|*ds, (3.11)
D3

where w is the function defined by (3.5). According to the singularity analysis
in section 5 and section 6, we know that |G(z — ¢(t)) +w(z, c(¢))] is estimated
by |G(z — c(t))|. Hence, from (3.11) and the estimate for G in section 5, we
have '

Lm  sIe= lm [ o@I(Glo—ct) +ul@,oft))Pds=+oo,

li SI(t,c)= i / G(z — c(t)) + w(z, c(t))|ds < co.
t—?t(gg(z)_\s( c) t-—»t(ggz)— BDSU('??)‘ (@ — c(t)) + wlz,c(t))]*ds < oo

Since Dy and D3 are separated, these behavior of $I(¢,c) enable us to distin-
guish 0D3 and 9Ds. .
The proof is complete. O

Now we give the reconstruction procedure for the shape and type
of each obstacle. It can be realized by the following steps: .

e Calculate the Dirichlet-to-Neumann map A, p from the far field patterns
u®(d,8), d,6 € S2.

e For any given needle c(t), calculate the sequences v, and f,,(-,c).

——

e Calculate <EA8D,U - Ao,o)fn(',c(t)y, fa (5 c(t))).
e Calculate I(¢,c) and
0D1 ={c(to); supgg,tIRI(s,¢)| < +o0 for 0< ¢ <,
tlign RI(t,c) = +oo},
=10 —

0Dy ={c(to); supggs<tIRI(s,c)l, supogs<t| SI (s, ¢)| < +oo for 0<t <o,
Jlim RI(t,c) = —co0 and Jim SI(t,c) < o0},
—ip— —i0—

OD3 = {c(t0); suPogs<t/RI(s,¢)], supog il SI(s, )| <400 for 0Kt <tp,
tlign RI(t,c) = —oo0 and tli{n SI(t,c) = +o0}. '
—lg— —tg—

The rest of the proof of Theorem 1.1 is to reconstruct boundary impedance
on Dj3. This will be given in the next section.




