uonzeyndwo)

BIIIE]



Jean-Jacques Chattot

Computational
Aerodynamics
and Fluid Dynamics

An Introduction

With 77 Figures

T

®); Springer




Professor Jean-Jacques Chattot

University of California
Department of Mechanical
and Aeronautical Engineering
One Shields Avenue

Davis, CA 95616, USA

Library of Congress Cataloging-in-Publication Data. Chattot, J.]. Computational aerodynamics and fluid dynamics :
an introduction/ Jean-Jacques Chattot. p. cm. - (Scientific computation, ISSN 1434-8322) Includes bibliographical ref-
erences and index. ISBN 3540434941 (alk. paper) 1. Fluid dynamics-Data processing. 2. Fluid dynamics-Mathematical
models. I. Title. I1. Series. QA911.C435 2002 532’.05-dc21 2002021726

ISSN 1434-8322
ISBN 3-540-43494-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Typesetting: Frank Herweg, Leutershausen
Cover design: design & production GmbH, Heidelberg
Printed on acid-free paper SPIN: 10875805 55/3141/ba-543210



Scientific Computation

Editorial Board

J.-J. Chattot, Davis, CA, USA

P. Colella, Berkeley, CA, USA

R. Glowinski, Houston, TX, USA
M. Holt, Berkeley, CA, USA

Y. Hussaini, Tallahassee, FL, USA
P. Joly, Le Chesnay, France

H. B. Keller, Pasadena, CA, USA
D.I. Meiron, Pasadena, CA, USA
O. Pironneau, Paris, France

A. Quarteroni, Lausanne, Switzerland
J. Rappaz, Lausanne, Switzerland
R. Rosner, Chicago, IL, USA

J. H. Seinfeld, Pasadena, CA, USA
A. Szepessy, Stockholm, Sweden
M. E. Wheeler, Austin, TX, USA

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong

III/?.’;dO” . 1] ONLINE LIBRARY
ilan Physics and Astronomy -

Paris
Tokyo http://www.springer.de/phys/




Scientific Computation

A Computational Method in Plasma Physics
E. Bauer, C. Betancourt, P. Garabechan

Implementation of Finite Element Methods
for Navier-Stokes Equations
F. Thomasset

Finite-Different Techniques
for Vectorized Fluid Dynamics Calculations
Edited by D. Book

Unsteady Viscous Flows
D. P. Telionis

Computational Methods for Fluid Flow
R. Peyret, T. D. Taylor

Computational Methods in Bifurcation
Theory and Dissipative Structures
M. Kubicek, M. Marek

Optimal Shape Design for Elliptic Systems
O. Pironneau

The Method of Differential Approximation
Yu. I. Shokin

Computational Galerkin Methods
C. A.]. Fletcher

Numerical Methods
for Nonlinear Variational Problems
R. Glowinski

Numerical Methods in Fluid Dynamics
Second Edition M. Holt

Computer Studies of Phase Transitions
and Critical Phenomena O. G. Mouritsen

Finite Element Methods
in Linear Ideal Magnetohydrodynamics
R. Gruber, J. Rappaz

Numerical Simulation of Plasmas
Y. N. Dnestrovskii, D. P. Kostomarov

Computational Methods for Kinetic Models
of Magnetically Confined Plasmas

J. Killeen, G. D. Kerbel, M. C. McCoy,

A. A. Mirin

Spectral Methods in Fluid Dynamics
Second Edition C. Canuto, M. Y. Hussaini,
A. Quarteroni, T. A. Zang

Computational Techniques

for Fluid Dynamics 1

Fundamental and General Techniques
Second Edition C. A.]J. Fletcher

Computational Techniques

for Fluid Dynamics 2

Specific Techniques

for Different Flow Categories
Second Edition C.A.]. Fletcher

Methods for the Localization of Singularities
in Numerical Solutions

of Gas Dynamics Problems

E. V. Vorozhtsov, N. N. Yanenko

Classical Orthogonal Polynomials
of a Discrete Variable
A. E. Nikiforov, S. K. Suslov, V. B. Uvarov

Flux Coordinates and Magnetic Filed
Structure: A Guide to a Fundamental Tool
of Plasma Theory

W. D. D’haeseleer, W. N. G. Hitchon,

J. D. Callen, J. L. Shohet

Monte Carlo Methods
in Boundary Value Problems
K. K. Sabelfeld

The Least-Squares Finite Element Method
Theory and Applications in Computational
Fluid Dynamics and Electromagnetics
Bo-nan Jiang

Computer Simulation
of Dynamic Phenomena
M. L. Wilkins

Grid Generation Methods
V. D. Liseikin

Radiation in Enclosures
A. Mbiock, R. Weber

Large Eddy Simulation for Incompressible
Flows An Introduction Second Edition
P. Sagaut

Higher-Order Numerical Methods
for Transient Wave Equations
G. C. Cohen

Fundamentals of Computational
Fluid Dynamics
H. Lomax, T. H. Pulliam, D. W. Zingg

The Hybrid Multiscale Simulation
Technology An Introduction with
Application to Astrophysical and Laboratory
Plasmas A.S. Lipatov

Computational Aerodynamics and Fluid
Dynamics An Introduction J.-J. Chattot

Series homepage - http://www.springer.de/phys/books/sc/




To my wife Adrienne
and son Eric



Preface

The field of computational fluid dynamics (CFD) has matured since the au-
thor was first introduced to electronic computation in the mid-sixties. The
progress of numerical methods has paralleled that of computer technology
and software. Simulations are used routinely in all branches of engineering as
a very powerful means for understanding complex systems and, ultimately,
improve their design for better efficiency.

Today’s engineers must be capable of using the large simulation codes
available in industry, and apply them to their specific problem by implemen-
ting new boundary conditions or modifying existing ones.

The objective of this book is to give the reader the basis for understanding
the way numerical schemes achieve accurate and stable simulations of phy-
sical phenomena, governed by equations that are related, yet simpler, than
the equations they need to solve. The model problems presented here are
linear, in most cases, and represent the propagation of waves in a medium,
the diffusion of heat in a slab, and the equilibrium of a membrane under
distributed loads. Yet, regardless of the origin of the problem, the partial
differential equations (PDE’s) reflect the physical phenomena to be modeled
and can be classified as being of hyperbolic, parabolic or elliptic type. The
numerical treatment depends on the equation type that can represent several
physical situations as diverse as heat conduction and viscous fluid flow. Non-
linear model problems are also presented and solved, such as the transonic
small disturbance equation and the equations of gas dynamics. The model
problems are given a full treatment, from the exact analytical solution, the
analysis of the scheme’s consistency and accuracy, the study of stability, to
the detailed implementation of the scheme and of the boundary and/or initial
conditions. It is the author’s hope that this will entice the reader to write
his/her own programs, and by doing so, learn more about CFD than a book
can teach.

Davis, March 2002 Jean-Jacques Chattot
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1. Introduction

1.1 Motivation

The material in this book is based on lecture notes on computational fluid
dynamics (CFD) that the author has developed over the past twenty years
in France, at Centre National d’Etudes Supérieures de Mécanique and at the
Université de Paris-Sud, and in the US at the University of California, Davis.

It is intended for senior undergraduate and first year graduate students
who will be developing or using codes in the simulation of fluid flows or other
physical phenomena governed by partial differential equations (PDEs).

It is the belief of the author, that a numerical method is not fully un-
derstood until it has been coded by the user and applied in simulation; each
model and scheme in this book is presented with this goal in mind.

1.2 Content

The book is self contained and kept at a simple enough level that the reader
will not need further references in order to understand the material.

The approach is based on the finite difference method (FD), which is wi-
dely employed as a method of discretization on cartesian mesh systems, in
the physical domain, or in the computational domain after coordinate trans-
formation. The extension to the finite volume method on arbitrary mesh
sytems, including unstructured meshes, although feasible with a similar ap-
proach, would require all analyses to be performed numerically, instead of
analytically in closed form, as is the case here.

The book is organized in chapters that build up each on material covered
in the previous chapters, particularly Chaps. 2, 3 and 4 and Chaps. 8-11.
Chapters 5, 6 and 7 can be read in any order.

The basics of the finite difference method are presented in Chap. 2. The
tools that will be used throughout the book are introduced: the Taylor expan-
sion and the complex mode analysis, which requires some complex algebra.
They are the tools for the accuracy and stability analyses.

Chapter 3 is devoted to ordinary differential equations (ODEs) and their
integration. ODEs represent an important particular case of partial differen-
tial equations (PDEs), when the number of independent variables reduces to
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one, either due to the nature of the physical problem (e.g. a time-dependent
problem reaches a steady-state), or because the solution is expanded in terms
of polynomials with unknown coefficients (Fourier series, etc...) in all but one
independent variable.

Chapter 4 is a simple, but general discussion of PDEs, their type and clas-
sification, the notion of characteristic surfaces, compatibility relations and the
jump conditions associated with conservation laws. For further understanding
of this complex topic, a reference is recommended to the reader. This chapter
is pivotal in making the connection between the physical phenomena of wave
propagation, diffusion and equilibrium, and their mathematical counterparts,
via the existence or non-existence of characteristics and their interpretation.

Chapters 5, 6 and 7 concern the linear model equations of hyperbolic, pa-
rabolic and elliptic type, respectively. Classical schemes are briefly reviewed
and discussed in terms of accuracy and stability. Practical aspects of the im-
plementation of selected schemes are presented; these should help the reader
develop his/her own programs for the proposed methods. These models offer
the opportunity to touch upon the subject of the solution of large linear al-
gebraic systems of equations when implicit schemes and iterative techniques
are discussed. The Thomas algorithm for tridiagonal matrices is described in
detail.

Chapter 8 is devoted to the convection-diffusion equation, a model for the
Navier-Stokes equations.

Chapter 9 presents the method of Murman and Cole, which, in many
respects, is a precursor to the advanced CFD schemes of today. The author
holds it in particular affection as he was asked as first assignment to imple-
ment it to simulate transonic flows past profiles and bodies of revolution at
ONERA, France, in the early seventies.

Chapter 10, “treatment of nonlinearities” is a short complement in techni-
ques of linearization, in an attempt to understand how linear stability analysis
can still be of use in the context of nonlinear problems.

Chapter 11 represents the application of the previous material to a system,
namely, the equations of gas dynamics, to study its type, its jumps and its
solutions. An extension of the Murman-Cole scheme is introduced and results
for a shock tube problem, the converging-diverging nozzle flow and the start-
up of a supersonic wind tunnel, are given. This chapter contains advanced
material such as eigenvalues and eigenfunctions. It can be skipped at the
undergraduate level.

In each chapter, short problems are proposed to the reader, to illustrate
a point or complete a proof that is only sketched. These problems should not
require more than one page of derivations and calculations to complete. In
Appendix A, more elaborate problems are proposed, taken from final exams
in class. These should be completed in a two-hours time frame. The solutions
to these problems are found in Appendix B.
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2. Basics of the Finite-Difference Method

2.1 Representation of a Function by Discrete Values

Let u = f(x) be a continuous and differentiable function to a sufficient or-
der in the interval [a,b]. A discretization of [a,b] with constant step h is
introduced:

b—a
ri=a+ (i—1)h, ry=a, zp=0>b h= —

iz —1’
12 is the total number of points of the discretization, h is the discretization
step. Let u; = f(x;) (see Fig. 2.1).

u=f(x)

1 i

a=0.5 Xj b=
).5 1 1.5 2

SIS
nhn

Fig. 2.1. Function u = f(x)

Remark: When f(x) is given, the discrete values u; = f(z;) are uniquely
defined. However, if the discrete values f(x;) are given, it is not possible to
find a unique u = f(x) such that u; = f(x;) without any further information
about f (such as being a polynomial of some sort). Going from the continuous
to the discrete carries with it a loss of information. In the finite difference
method there is no hypothesis concerning the variation of the function bet-
ween the points. This is in contrast to the finite-volume or finite-element
methods where some assumption is made concerning the variation of the
function between the points.



6 2. Basics of the Finite-Difference Method
2.2 Representation of a First Derivative

Let f(x) be a continuous function, differentiable as many times as needed in
[a,b]. Then there exists a Taylor expansion about any point x;:

Uip1 = f(@iv1) = f(zit+h) = f(z:)+hf'(x )+h— (i) + f”’( )+O(h?).

21
O(h*) is the remainder and indicates that the unwritten terms are of
fourth-order and higher. Since f(x;) = u; we can write

Uiyl — Uj y h ., h?
— = f(x; T;
= )+ S ) + 5
As h — 0, (wig1 —wu;)/h — f'(x;) thus the left-hand side of (2.1) is by
definition a finite-difference approzimation (FD) of the first derivative [’ at
point z;. The leading term in the error is

" (z) + O(h®). (2.1)

h .
- "(x;) = O(h), ash — 0.

It is said that the scheme is first-order accurate. It is also qualified as a
one-sided or advanced or forward finite-difference scheme.

Replace h by —h and get

h? h3

it = Jl@ia) = flai—h) = (o) = hf (@) + 57 £ (@) = 57 0" () + O(h')
and
L e/ h }2./// p
S = fla) = @)+ g @) £ O (2

Again, by definition, the left-hand side is a FD approximation of f at x;.
It is one-sided (retarded or backward) and first-order accurate.
Define the average of the two previous schemes: ((2.1)4(2.2))/2

Uig1 — Ui h?

2h = @i+ 3!

This is a centered FD approximation for f' at x;; it is second-order ac-

curate. Note that the remainder is of fourth-order. This is because we have

taken into account the fact that the odd-order derivatives vanish in the com-
bination.

Non-centered schemes are not necessarily first-order accurate as the pre-

vious results may suggest. The following non-centered scheme is second-order
accurate:

— f""(x;) + O(h). (2.3)

— Uyt 4"i 73/,’ i }’2 /
Uiyo + 4t i:f'(-l'i)—f*f”( ;) + O(h?).
2h 3




