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Preface

The material in this book is presented in a logical sequence,rather than a
historical sequence. Thus, we feel obligated to sketch briefly the history of
the special theory of relativity. The brilliant experiments of Michelson and
Morley in 1887 demonstrated the astonishing fact that the speed of light is
independent of the state of relative linear motion of the source of light and
the observer of the light. This fact necessitates the modification of the usual
Galilean transformation (between two relatively moving observers), which
tacitly assumes that time and space are absolute.

Fitzgerald in 1889 and Lorentz in 1892 altered the Galilean transforma-
tion by introducing a length contraction in the direction of relative motion.
This contraction explained the Michelson—-Morley experiment, but it was
viewed by both Fitzgerald and Lorentz as a mathematical trick only and not
indicative of the nature of reality. In 1898 Larmor introduced a similar time
dilation in an attempt to find the transformations which leave Maxwell's
equations invariant. Lorentz also introduced the time dilation independently
sometime before 1904. Poincaré in 1905 also discovered the Lorentz transfor-
mation and asserted that it was the fundamental invariance group of nature.
Einstein in 1905 discovered the Lorentz transformation from physical con-
siderations. Einstein, alone among these mathematical physicists, recognized
the philosophical implications of the Lorentz transformation in that it re-
jected the commonly held notion that space and time were both absolute. He
postulated the equivalence of all inertial frames of reference (moving with
constant velocities relative to each other) with regard to the formulation of
natural laws. Furthermore, he recognized and postulated that the speed of
light is the maximum speed of propagation of any physical action. Therefore,
the speed of light must be invariant for all inertial observers. Thus the
Michelson-Moreley experiment was reconciled with theory. Minkowski, a
mathematician, combined both physical postulates of Einstein into one
mathematical axiom. This axiom is that “all natural laws must be expressible
as tensor field equations on'a (flat) absolute space—time manifold.” Thus, in
that there is no preferred inertial frame for the formulation of natural laws, a
universal democracy is postulated to exist among all inertial observers. This

.
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" viii  Preface

axiom is called the Principle of Special Relativity. Many experiments in-
volving atoms and subatomic particles have verified the essential validity of
this principle.

In the first chapter we introduce axiomatically the four-dimensional
Minkowski vector space. This vector space is endowed with a nondegenerate
inner product which is not positive definite. Therefore, the concepts of the
norm (or length) of a four-vector and of the angle between two four-vectors
have to be abandoned. A Lorentz mapping is introduced as an inner product
preserving linear mapping of Minkowski vector space into itself,

In Chapter 2 we introduce the flat Minkowski space—time manifold with a
proper axiomatic structure. It is proved that the transformation from one
Minkowski chart to another must be given by a Poincaré transformation {or
an inhomogeneous Lorentz transformation). The conceptual difference be-
tween a Lorentz transformation of coordinate charts and a Lorentz mapping
of the tangent (Minkowski) vector space is clearly displayed. Minkowski
tensor fields on the flat space—time are also defined.

In the third chapter, by applications of a particular Lorentz transforma-
tion (the “boost™), length contraction, time retardation, and the composition
of velocities are explained. The group structure of the set of all Lorentz
transformations is demonstrated, and real representations of the Lorentz
group are presented. The proper orthochronous subgroup is defined and
discussed also.

The fourth chapter defines the spinor space (a two-dimensional com-
plex vector space) and the properties of spinors. Bispinor space (a four-
dimensional complex vector space) is also introduced. It is shown that a
unimodular mapping of spinor space can induce a proper, orthochronous
Lorentz mapping on Minkowski vector space. Furthermore, a unimodular
mapping of bispinor space is shown to induce a general Lorentz mapping of
Minkowski vector space.

In Chapter 5 prerelativistic mechanics is briefly reviewed. In the setting of
prerelativistic mechanics in space and time, E; x R, the momentum conju-
gate to the time variable turns out to be the negative of energy! After this, the
relativistic mechanics is investigated. The Lagrangian is assumed to be a
positive homogeneous function of degree one in the velocity variabies (which
makes the generalized Hamiltonian identically zero!). Examples from electro-
magnetic theory and the linearized gravitational theory of Einstein are
worked out. ’

In Chapter 6 the relativistic (classical) field theory is developed. Noether's
theorem (essential for the differential conservation laws) is rigorously proved.
As examples of special fields, the Klein-Gordon scalar field, the electromag-
netic tensor field, nonabelian gauge fields, and the Dirac bispinor field are
presented. However, at the present level of treatment, gauge fields are not
derived as connections in a fibre bundle over the base (Minkowski) manifold.
In each chapter, examples and exercises of various degrees of difficuity are
provided.
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Chapter 7 deals with a research topic, namely, classical fields in the eight-
dimensional extended (or covariant) phase space. Historically, Born and
Yukawa advocated the extended phase space on the basis of the principle of
reciprocity (covariance under the canonical transformation p = —gq, § = p).
In recent years, Caianello and others have considered the principle of maxi-
mal proper acceleration arising out of the extended phase space geometry. We
ourselves have done some research on classical fields in the eight-dimensional
phase space. We can obtain, in a certain sense, a unified meson field and a
unification of fermionic fields. These fields, however, contain infinitely many
modes or particles.

We have changed the usual notation for the Lorentz metric »; in favor of
d; (since n,, is used for the pseudotensor) and y = (1 — v?)""? in favor of
B = (1 — v*)"'2 (since 7 is used to denote a curve).

This book has grown out of lectures delivered at Jadavpur University
{Calcutta), University College of Dublin, Carnegie—Mellon University, and
mostly at Simon Fraser University (Canada). The material is intended mainly
for students at the fourth and the fifth year university level. We have taken
special care to steer a middle course between abstruse mathematics and theo-
retical physics, so that this book can be used for courses in special relativity
in both mathematics and physics departments. Furthermore, the material
presented here is a suitable prerequisite for further study in either general
relativity or relativistic particle theory.

In conclusion, 1 would like to acknowledge gratefully several people for
various reasons. I was fortunate to learn the subject of special relativity from
the late Professor S. N. Bose F.R.S. (of Bose-Einstein statistics) in Calcutta
University. T also had the privilege for three years of being a research asso-
ciate of the late Professor J. L. Synge F.R.S. at the Dublin Institute for
Advanced Studies. Their influence, direct or indirect, is evident in the presen-
tation of the material (although the errors in the book are solely due to me!).
In preparation of the manuscript, I have been helped very much by Dr. Ted
Biech, who typed the manuscript and suggested various improvements. Mrs.
1. Fabricius typed the difficult Chapter 7. Mrs. E. Carefoot drew the diagrams.
Dr. Shounak Das has suggested some literary improvements. I also owe
thanks to many of my students for stimulating discussions during lectures.

I thank Dr. S. Kloster for the careful proof reading.

Finally, I thank my wife Mrs. Purabi Das for constant encouragement.
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1

Four-Dimensional Vector Spaces and
Linear Mappings

1.1. Minkowski Vector Space V,

The three-dimensional vectors in Newtonian physics are generalized into
four-dimensional vectors in the theory of relativity. This four-dimensional
vector space is called the Minkowski vector space and is denoted by V,. This
vector space is over the real field R. The mathematical axioms for addition
and scalar multiplication of Minkowski vectors are as follows:

Al. a+beV,foralla,beV,.

A2. a+b=Db+aforalla,beV,.

A3, (a+by+c=a+(b+c)foralia,bceV,.

A4, ThereisOeV,suchthata+0=aforallaeV,.

AS. ForallaeV, thereis —a e V, so that (—a) +a = 0. (L)
Ml. aaeV,forallaeR, forallaeV,.

M2. a(fa)=(zf)aforalle, BeR, forallaeV,.

M3, la=aforallaeV,.

M4, a(a+b)=aa+abforallae R, foralla,beV,.
M5. (x+ fla==za+ faloralla, feR, forallaeV,.

We shall also assume the existence of an inner product for V, satisfying the
following axioms:

Il. a-beRforalla,beV,.
12. a-b=b-aforalla,beV,.

13. (Aa+pub)-c=Ai@c)+ub-c)forall i, ueR, (1.1.2)
foraila,b,ceV,.

4. a-x=0forallxeV,ifand onlyifa=0.
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The axiom I4is called the axiom of nondegeneracy. It is a weaker axiom than
15 a-a>0forallaeV,, anda-a=0ifand onlyifa =0. (1.L.3)

For a positive definite inner product axiom I5 replaces 14. In addition to these
axioms we impose the axiom of dimensionality on Minkowski vector space:

Dl. dimV,=4.

Let {e,,e,,€;,¢e,} be a basis set for V,. The metric tensor components rela-
tive to this basis are defined by

gy=¢e-¢€ fori je{l,2,3,4}. (1.1.4)

From axiom 12 it follows that g;i = gy for all i, je{1,2,3,4}. The four-
dimensional unit matrix is denoted by I = [§;]. The eigenvalues of the
matrix [g;] are the roots of the characteristic equation

det[g;; ~ 49,;] = 0. (1.1.5)

Since the matrix g;; is symmetric, the roots of (1.1.5) are all real. By the axiom
of nondegeneracy 14 it follows that all the eigenvalues of g; are nonzero.
The signs of the eigenvalues of g; are determined by the axiom of Lorentz
signature:

SI. 4,>0,4,>0,43;>0,4,<0.

The vector space obeying the sixteen axioms A1-AS, M1-M5, I1-14, DI,
and S1 is called Minkowski vector space and is denoted by V,,.

In V,, the two vectors a, b are defined to be Minkowski orthogonal (or
M-orthogonal) provided

a'b=0. (1.1.6)

Theorem (1.1.1): There exists an M-orthonormal basis {e,,e,,e;,e,} for V,
such that

gl'j = ei'ej = d,'j, (1.[.7)
where
1 00 0
010 0
D=Md:1=1g o 1 of
0 0 0 -1

The proof is rather involved and is omitted. The metric d;;in (1.1.7) is called
the Lorentz metric. The signature of d;; is defined to be the trace of [d;]. We
shall use a choice of [d;;] so that the signature is equal to 2. Note that some
authors use the signature —2. ]

Now we shall explain the Einstein summation convention. In a mathemati-
cal expression, wherever two repeated Roman indices are present, the sum



1.1. Minkowski Vector Space V, 3
over the repeated index is implied. For example, we write

uky, = Zuv,, Zuv,—uv,,

k=1
i) = & & k! K, 1
L —_— —
gyu'v zl ;;1 gk iyd kzl 1; Jru'v = guu'v.

The summation indices are called dummy indices, since they can be replaced
by other indices over the same range. In the summation convention, never use
dummy indices that repeat more than twice. This is necessary in order to
avoid wrong answers; for example,

ukvutp, = Z utvuto, # 21 ‘Z utvuly, = utvu'y, = (uy,)2.

Let {e,,e;, e;,e,} be an M-orthonormal basis (or tetrad) for V,. For any
vector u € V,, there exists a linear combination .

4
u= Y ue =ule. (1.1.8)
=1

The unique numbers or scalars u’ are called the Minkowski components of the
vector u relative to the basis {e,, e;,e5,¢e,}.

Theorem (1.1.2): In terms of the Minkowski components, the inner product
between vectors u, v is given by

u-v =d;u'v. (1.1.9)
Proof : Choose an M-orthonormal basis {e,,e,,e,,e,} such that
u=ule, v=role,. -
By the axioms in (1.1.2) and (1.1.8) we have
u-v =(u'e) (v'e) = dyu'v’. W
Note that from (1.1.9)
u-u=dguiu’ = @) + W?)? + @) — W) (1.1.10)

The above expression is not positive definite. Thus the concept-of the length
(or norm) of a vector in V, is abandoned. Furthermore, if we define cos(u, v) =
(u-v)/\/(u-u)(v-v), then we are led to contradictions. For example, if we
choose v, = e, + [(n — 1)/n]e, for ne Z* and let u = e,, then cos(e,,v,) =
n/\/(2n — 1). Therefore, 1 < cos(w,v,) and lim,_ cos(u,v,) — o, which is
absurd. That is why the concept of an angle between two vectors u, ve V,
is abandoned as well. However, for a spatial vector subspace V, = {ve V,:
v* = 0}, the usual concept of the length and angle can be restored.

Since the expression (1.1.10) for u- u is indefinite, we can define three kinds
of vectors in V,:
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(i) a vector u € V, that satisfies u-u > 0 is called a spacelike vector,
(ii) a vector u € V, for which u-u < 0 is called a rimelike vector;
(ii1) a vector u € V for which u-u = 0 is called a null vector.

Example: Let {e;,e,,e;,e,} be an M-orthonormal basis for V,. By (1.1.9),
e, e, =dy; = 1. Thus e, is a spacelike vector. Similarly e,, e; are spacelike
vectors. Bute, e, = d,, = — 1,s0 e, is a timelike vector. Setu = e, + e, and
observe that u-u = 0, so we see that uis a null vector. [

The separation number is a generalization of the concept of length and is
denoted by o(u). It is defined by

o(u) = J|u-u| > 0. (1.1.11)

Thus for either timelike or spacelike vectors u € V, we have a(u) > 0. But for
a null vector n we have o(n) = 0. For an example choose u = (e, — 2e,)/2.

Then otw) = /| —3/4] = /3/2.
A vector e in V, is called a unit vector if o(e) = 1. Subsequently we shall use
only M-orthonormal bases for V, unless mentioned otherwise. A spatial vec-

tor subspace relative to an M-orthonormal basis is defined as
Vy={veV:v* =0} (1.1.12)

Small Greek indices will take values in the set {1,2,3}, and small Roman
indices will take values in the set {1,2,3,4}. The appropriate summation
convention will apply to each type of index.

Theorem (1.1.3) (Schwarz Inequality): For any two vectors u, v in V5 the follow-

ing inequality holds:

luv®| < Juru oo’ (1.1.13)
Equality holds if and only if u* = iv* for some 4 € R.
Proof: Suppose that u®= 0. Then (1.1.13) holds trivially. Now suppose
u*u® > 0. Then for any 4 € R we have

(Au® + 0%)(Au® + v%) = AZ™u® + v0* + 2Au™* 2 0.
Setting the value 1 = —(u*v*)/(u’u’), we obtain
[—@**)? + (W) (0Po") )/ (u"u?) = 0.

From above (1.1.13) follows. The case of equality mentioned in the theorem

is left as an exercise. M

The M-orthogonality between two vectors in V, is not always intuitively
natural. We shall derive a few theorems on that topic now.

Theorem (1.1.4): No two timelike vectors in V, can be M-orthogonal.
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Proof: Let u, v be two timelike vectors. Thus we have

uu = dutn) = utut — (u*)? <0,

vov = dg'v) = v* — (v*)? < 0.
Combining these two inequalities we have

\/u_’l;W < |utv?.
By the Schwarz inequality (1.1.13) we obtain
futo®| < |uv?]. (1.1.14)

Suppose, contrary to the conclusion of the theorem, that u-v = 0. Then

lu*v®| = |u*v®|. This last equality contradicts (1.1.14). W

Corollary (1.1.1): For two timelike vectors w, v such that u* > 0, v* > 0, we
haveu-v < 0.

Proof - u™v® < |uv?| < Juufr® <|u*v*] = u*t*,sou-v<0. W

Theorem (1.1.5) (Synge): Ler i, t be two timelike, future-pointing unit vectors
(past-pointing may replace future-pointing). Then —oc <i-t < —1.

Proof : For definiteness assume that i, t are future-pointing timelike vectors.
Thus

o(t) =1, t*t* — (142 = —1, t* >0,
cy=1 PPF-({@*P=-1, #>0

We want to solve the above equations and inequalities. For that purpose
consider two three-dimensional unit spatial vectors:

aa®=1, a*q* = 1.
In spherical polar coordinates we can write
a' =sinfcosg, a' =sinfcosd,
2 =sinfsing, 4% =sinfsing,
3

a

I

a® = cos®, a3 = cosé,

where 0<f<m 0<Ac<nr, —n<¢<mand —n < $ < n Thus we have
cosy = a*a* = cosfcos ¥ + »inOsinfcos(¢ — ¢), where y is the angle be-
tween the two vectors a®, 4° and 0 < ¢ < n. We can always express t and t in
the form

t* = (sinh y)a?, {% = (sinh 3)a?,

t*=coshy>0, {*=cosh$>0,
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where y, § € R. Therefore,
—t-t = cosh g cosh g[cos2(y/2) + sin2(¥/2)]
— sinh y sinh g[cos?(/2) — sin?(y/2)]
= cosh(y — £)cos?(¥/2) + cosh(y + #)sin3(y/2) > 0.

Makmg another transformation x = sm(np/Z) so that x € [0,1], we get y =
—t-t = [cosh(y + #) — cosh(y — §)]x2 + cosh(y — #) = f(x). Thus we can
graph the function f(x) over xe[0,1]. For the case cosh(y + }) —
cosh(y — §) > 0, this graph is a portion of a parabola with f'(x) > 0 and
cosh(y — f) <y < cosh(y + £). For the case cosh(y + £} — cosh(x — §) <0,
the graph is a portion of a parabola with f'(x) < 0 and cosh(y + 3) < y<
cosh(y — 7). In the case cosh(y + %) — cosh(y — ) = 0, the graphis a portion
of a straight line with f'(x) = 0 and y = cosh(y + ) = cosh(y — #). In all
three cases min{cosh(x + g)cosh(y — )} < y < max{cosh(x + £),cosh(y — 7)}.
Since the function cosh(x) has the lower bound 1 and no upper bound, we see
that < y<oo,s0 —c0o <t-t<—1. W

Corollary (1.1.2): Let t, t be two timelike, future-pointing unit vectors such that
tt=—1Thent=1

Proof: From the proof of Theorem (1.1.5), it is" clear that, for the case
cosh(x + #) > cosh(y — %), the minimum value y = 1 is at x = 0 and the min-
imum value is cosh(y — ) = 1. Thusy =0 and y = §,50 8 = 0, ¢ = §. Thus
t* = % t* = {*; hence, t = t. In the second case cosh(x + £) < cosh(y — %),
and the minimum value is cosh(y + 2) =1 at x = 1. Therefore, y = = and
x=-fandsof=n—60,¢=¢+n Thus =7 t*=1* sot =1t In the
case cosh(y + £} = cosh(y — £), the minimum value is 1, whlch is attained
by all x € [0,1]. Then cosh(x + £) = cosh(y — )2) =1; hence, y =% =0. So
t==0t=Msot=1{ N

Theorem (1.1.6): A timelike vector cannot be M-orthogonal to a nonzero null
vector.

Proof: Suppose that t is a timelike vector and n is a nonzero null vector.
In terms of their Minkowski components t“t* < (t*)® and n°n® = (n*)® with
{t*| > 0, |n*] > 0. Combining these expressions and using the Schwarz in-
equality (1.1.13) we have

(t*n*)? < tt°n?n? < (t*n*) (1.1.15)
Suppose that t-n = 0, or (t*n®)? = (¢t*n*)2. This contradicts (1.1.15). H

Now we shall prove a very counterintuitive theorem.

Theorem (1.1.7): Two nonzero null vectors are M-orthogonal if and only if they
are scalar multiples of each other.
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Proof: (i) Assume that two null vectors m, n are such that m = Jn for some
AcR Thenm-n=A(n-n)=0.
{ii) Suppose that two nonzero null vectors m, n are M-orthogonal. Then
m-m = m'm® — (m*)® = 0, .
n'n=nn®—(n*)> =0, (1.1.16)
m-n=mn*—m*n* =0, m*#0,n* #0.
From the above expressions we obtain
(M%) = (m*n*y? = m*m*nfn?,  |m*n®| = W. (1.1.17)
The above equation is the case of equality in the Schwartz inequality (1.1.13).

Therefore, m* = An* for some scalar A # 0. Since n* #0, we have m* =
m*n*/n* = in*n®/n* = In*. Thusm=/in. W

It is hard to plot the Minkowski vectors, since the concepts of length of a
vector and angle between two vectors do not exist. However, the parallelo-
gram law of vector addition still holds. It is worthwhile to draw Minkowski
vectors to gain some geometrical insight. We have to plot these vectors on 2
piece of paper, which is part of a Euclidean plane. Let us plot M-orthonormal
vectors e,, e, such thate ;"e, =0ande,-e; = —e e, = 1.1t is quite natural
to plot these two vectors as i and j of the usual two-dimensional Cartesian
basis vectors; see Figure 1. As we have drawn, the Euclidean lengths |le, || =
el = 1 and e,, e, are Euclidean orthogonal. However, the vectors e, + e,
—e, + e, have Euclidean lengths fle, + e, = i—e; + e = J2, and e, +
e,, —e, + e, are Euclidean orthogonal. But s(e, + e,)=0,0(—e, +¢e,)=
0,and (e, + €,) (—e, + e,) = —2 # 0. So we have to use caution in order to
interpret any plot of Minkowski vectors.

1\
ey 'e1 +ey
- e1 + e4
FiGuURe 1. Minkowski vectors e, =
€y, € + &y, —€ + €4 €4

EXERCISES 1.1

1. Let {e,,e,,e3,e,} be a Minkowski basis for V,. Let another basis be
{a,b,c,d} where

a=e +e,+e,—¢e, b=e —e;+. 2,

c=e; — €4 d=e,.
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(i) Determine which of these are spacelike, timelike, or null vectors.
{ii) Obtain the separation numbers o(a), a(b), 6(c), a(d).
(iii) Determine whether or not {a, b,¢,d} is a basis for V,.

2. Determine which of the following subsets of V, is a vector subspace.
(1) The union of the subset of all spacelike vectors and {0}.
(ii) The union of the subset of all timelike vectors and {0}.
(iii) The subset of all null vectors.

3. Prove that the nondegeneracy axiom of the inner product in (1.1.2)
implies that det[g,;] # 0.

4. Prove that for any two vectors x, y in V; that
[x®y = /xx=yy?
holds if and only if x = Ay for some 4 € R.

5. Let s, t be two timelike future-pointing vectors in V,. Prove that
a(s)o(t) < |s-t|. (This is called the Reversed Schwarz Inequality for timelike
future-pointing vectors.) Does it hold for other cases, ie., past-pointing or
mixed orientation?

1.2. Lorentz Mappings of V,

A linear mapping L: V, — V, is defined to be such that
L(a + ub) = iL(a) + uL(b) (1.2.1)

forali, ueRand alla,beV,.

Suppose that {e,,e;,ej,e,} is a basis for V, that is not necessarily M-
orthonormal. Since L(e,) € V,, we must have

& =Lie) = le, (1.22)

for some suitable scalars I', i, j € {1,2,3,4}, and the summation convention
applies. The 4 x 4 matrix L = [I;], where i stands for the row index and jfor
the column index, is called the matrix representation of the mapping L rela-
tive to the bases of V,, {e,,e;,¢5,¢,}, and {&,,&,,&,,¢,}.

Theorem (1.2.1): Let &; = L(e;). The set of vectors {&,,&,,83,8,} is also a basis
Jor V, if and-only if det[I}] # 0.

The proof is left to the reader.
A linear mapping L with det[l';] # 0 is called invertible.
Example: Let us consider a linear mapping L such that
8, = L{e,) = sin(n/4)e, + cos(n/d)e, = I',e,,

&, = L(e,) = —cos(n/d)e, + sin(n/d)e, = I';e,,
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& =Lie;)=e;=1'se,
é,=Le)=e,=1l,e,.
Therefore, the 4 x 4 matrix representation is
sin(n/4) —cos(n/4) 0 O
. cos(n/4 sin(n/4 00
10
01

)

0 0
0 0
with det[l';] = 1. The linear mapping L is invertible. The basis {&,,¢,,&;,&,}
is M-orthonormal whenever {e,,e,,e;,e,} is M-orthonormal. 3

Now we shall define the Kronecker delta:
. 1 fori=j,
o= 1.2.

! {0 fori# j. (123)
These numbers are the entries of the 4 x 4 identity matrix I relative to the
standard basis {e,,e,,e;,e,}. Similarly §*/ are the entries of the 3 x 3 iden-
tity matrix with respect to the standard basis {i, j, k}. We shall work out some
examples involving the Kronecker delta.
Example: Consider the sum

ol =& ut + 8%yt + 8y + ot
= lu' + 0u? 4 Ou® + Ou* = u'.

Similarly

ohul =, (1.2.4)

8 =6 O (1.2.5)

For an invertible linear mapping L, we denote the inverse mapping by A,
so that the corresponding matrices satisfy

A=L"'Y AL=LA=1 d¥,=ld, =8, (1.2.6)
Example:
' [ sin(n/4) cos(n/4) 0 0
] = —cos(n/4) sin(n/4) 0 O
= 0 0 1 0
| o 0 o0 1]
[ sin(n/4) —cos(n/4) 0 O]
(4 _ | cos(z/4) sin(z/4) O O
lad=1"% 0 T
| 0 o o0 1]




