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Preface

This book is an introduction to the theory of complex manifolds and their
deformations.

Deformation of the complex structure of Riemann surfaces is an idea
which goes back to Riemann who, in his famous memoir on Abelian
functions published in 1857, calculated the number of effective parameters
on which the deformation depends. Since the publication of Riemann’s
memoir, questions concerning the deformation of the complex structure of
Riemann surfaces have never lost their interest.

The deformation of algebraic surfaces seems to have been considered
first by Max Noether in 1888 (M. Noether: Anzah! der Modulen einer Classe
algebraischer Flichen, Sitz. Koniglich. Preuss. Akad. der Wiss. zu Berlin,
erster Halbband, 1888, pp. 123-127). However, the deformation of higher
dimensional complex manifolds had been curiously neglected for 100 years.
In 1957, exactly 100 years after Riemann’s memoir, Frolicher and Nijenhuis
published a paper in which they studied deformation of higher dimensional
complex manifolds by a differential geometric method and obtained an
important result. (A. Frélicher and A. Nijenhuis: A theorem on stability of
complex structures, Proc. Nat. Acad. Sci., U.S.A., 43 (1957), 239-241).

Inspired by their result, D. C. Spencer and 1 conceived a theory of
deformation of compact complex manifolds which is based on the primitive
idea that, since a compact complex manifold M is composed of a finite
number of coordinate neighbourhoods patched together, its deformation
would be a shift in the patches. Quite naturally it follows from this idea
that an infinitesimal deformation of M should be represented by an element
of the cohomology group H'(M, ®) of M with coefficients in the sheaf @
of germs of holomorphic vector fields. However, there seemed to be no
reason that any given element of H'(M, ®) represents an infinitesimal
deformation of M. In spite of this, examination of familiar examples of
compact complex manifolds M revealed a mysterious phenomenon that
dim H'(M, ®) coincides with the number of effective parameters involved
in the definition of M. In order to clarify this mystery, Spencer and I
developed the theory of deformation of compact complex manifolds. The
process of the development was the most interesting experience in my whole
mathematical life. It was similar to an experimental science developed by



viii Preface

the interaction between experiments (examination of examples) and theory.
In this book I have tried to reproduce this interesting experience; however
I could not fully convey it. Such an experience may be a passing phenomenon
which cannot be reproduced. .

The theory of deformation of compact complex manifolds is based on
the theory of elliptic partial differential operators expounded in the Appen-
dix. I would like to express my deep appreciation to Professor D. Fujiwara
who kindly wrote the Appendix and also to Professor K. Akao who spent
the time and effort translating this book into English.

Tokyo, Japan KuniHiko KoDAIRA
January, 1985
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Chapter 1

Holomorphic Functions

§1.1. Holomorphic Functions
(a) Holomorphic Functions

We begin by defining holomorphic functions of n complex variables. The
n-dimensional complex number space is the set of all n-tuples (z,,. .., z,)
of complex numbers z,i=1,...,n, denoted by C". C" is the Cartesian
product of n copies of the complex plane: C"=C Xx- .- XC. Denoting
(z,...,2,) by z, we call z=(z,,...,2,) a point of C", and z,,..., z, the
complex coordinates of z. Letting z; = x,,_, + ix,; by decomposing z into
its real and imaginary parts (where i =,—1), we can express z as

2=(X), X3y <y X2n-1s X20)- (1.1

Thus C" is considered as the 2n-dimensional real Euclidean space R*"
equipped with the complex coordinates. x,, X3, . . . , X2n_1, X2 are called the
real coordinates of z. Let z=(z,,..., z,) and w=(w,, ..., w,) be points in
C". We define the linear combination Az+ uw of z and w, viewed as vectors,
by

Aztuw=(Az;+puw,..., Az, +uw,),

where A and u are complex numbers. This makes C" a complex linear
space. The length of z=(z,,..., z,) is defined by

|zl =]z [+ - -]zl (1.2)

Clearly we have
Ixz| =]z, (1.3)
|z+w|=|z)+]wl. (1.4)

The distance of the two points z, we C" is given by

|z—wl=V]z; = wi+- - - +|z, — w2 (1.5)



2. 1. Holomorphic Functions

We introduce a topology on C" by the identification with R*" with the usual
topology. Thus, for example, a subset D= C" is a domain in C" if D is a
domain considered as a subset of R*". Again, a complex-valued function
f(z)=f(z,,..., z,) defined on a subset D in C" is continuous if f(z) is so
as a function of the real coordinates x,, x,, ..., X2,..

Now we consider a complex-valued function f(z)=f(z,...,2,) of n
complex variables z,,..., z, defined on a domain D<= C",

Definition 1.1. If f(z) = f(z,,..., 2,) is continuous in D< C", and holomor-
phic in each variable z,, k=1,..., n, separately, f(z,, ..., z,) is said to be
holomorphic in D. We also call f(z)=f(z,,..., z,) a holomorphic function
of n variables z,, ..., z,.

Here, by saying that f(z,,..., z,. .., z,) is holomorphic in z, separately,
we mean that f(z,,..., z,) is a holomorphic function in z;, when the other
variables z;,..., Zx_y, Zk+y, . . - , 2, are fixed.

The fundamental Cauchy integral formula with respect to a circle for
holomorphic functions of one variable is extended to the case of holomor-
phic functions of n variables as follows.

Given a point ¢=(c,,...,c,)€C" and positive real numbers r,, ..
we put

"r’l’

U,(C)={Z|Z=(Z|,. vy zn)“zk—ck|<rk: k= 1" L] n}, (1‘6)

where r denotes (r,,...,r,). Let U, (c) be the disk with centre ¢, and
radius r, on the z.-plane. Then we have

U,(C) = Ur,(cl) Xee o X Ur,,(cn)- (1'7)

Thus we call U, (c) the polydisk with centre c. We denote by C, the boundary
of U, (c), that is, the circle of radius r, with centre ¢, on the z,-plane. Of
course C; is represented by the usual parametrization 6y » y(8,) = ¢, + r, €
where 0= 6, =2#. The product of C;, C,, ..., C,

C"=Cix---xC, (1.8)
is called the determining set of the polydisk U,(c). C" is an n-dimen-

sional torus. Given a continuous function ¢({)=y¢({y,..., L), with
LeC,, ..., L eC, we define its integral over C" by

I ll’({)d{l"'d(n:'[ ..'I 'l’(:)d{l"'dgn
cr < C,

2 2w
=j I YN8, -, Ta())¥4(B)) ... ¥i(6,) d6y ... dB,. (1.9)

[
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Theorem 1.1. Let f=f(z,,...,2,) be a holomorphic function in a domain
D < C". Take a polydisk U,(c) with [U,(c)]< D. Then for ze U,(c), f(2) is
represented as

(LY S ln)
f(Z) (27") -[C" (;l _zl) s ({n —Zn) dgl dgm (1.10)

where [ ] denotes the closure.

Proof. First we consider the case n=2. In this case the right-hand side of
(1.10) becomes

(L)ZJ‘Z” Izwf(YI(ol), ¥2(65)) v1(6,) v2(6,)
2ri o Jo (7:(0,) — 2,)(y2(62) — 25)

de, de,,

where the integrand is a continuous function of 8, and 6, for (z,, z,) € U,(c).
Hence by the formula of the iterated integral, this integral is equal to

(=)

Therefore by the Cauchy integral formula, the right-hand side of (1.10)

becomes
1\ J’ 1 If(z.,:z)
— d d.
(Zﬂ'i) ali—z d c L2 k2

wse | Lee®) gy pa,, 1)

2mi < {l —2Z;

r" 71(6:) d, r'f(’n(l?l), ¥2(62)) v2(6.) do,

o N(B)—z [ ¥2(82)—z;

which proves (1.10) in this case. Similarly for general n, by a repeated
application of the Cauchy integral formula, the right-hand side of (1.10)
becomes

(L)j dz, J ., jf("""""""")d;
27 abi—z c,,_,lu-l_zu—l G, $n— 2, "

= L ! 1 ... f({h"-’(n—hzn)
_(2"i) adi—z J.c,,_l Loy = Zn—y 4o
_'._=L f(ghzb'--’zn) _

- 2,",' JC; ;l—zl d{l _f(zh--'szn)- l

As in the case of holomorphic functions of one variable, we shall deduce
the fundamental properties of holomorphic functions of n variables from
the integral formula (1.10).
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First let (L, ..., {,) be a continuous function on C"=C; X --XC,,
and m,, ..., m, natural numbers. Consider the integral

= w(;ly""{n)d{l"'d{n
£(z) Ic" Gi—z)™ - (la—2)™

(1.11)

as afunctionof z=(z,,..., z,) € U,{(c). Clearly g(z) is continuous in U,(c).
Then for fixed z;e U,(c)),..., z.€ U, (c,), put

J’ (..., L) dl - dL,

C, L=z (L= 2a)™

¢(£l)=j

[ &Y

() is a continuous function of {; on C,. Hence

8(2)'—'8(21,22,---,1.-)“ C'(—‘,T_Li:;_m;dg (112)

is a holomorphic function of z, in U,(c,). Similarly g(z,,...,z,) is a
holomorphic function of each variable z,, k=1,...,n, in U, (¢c). Hence
g(z)=g(z,,...,z,) is a holomorphic function of n variables z,,..., z, in
the polydisk U,(c). By (1.12) we have

. _ (&)
™ gz, ..., za)=m L Gmz)™ dg,

=mlj ...J 'p(;ls"'ac'l)d;l"'dgu (113)
c Ce

({l-zl)ml-'.l tte ({n—zn)m"'

Thus (9g/8z,)(zy, .. ., z,) is also holomorphic in U,(c). Similar results hold
also for ag/az.

By a repeated application of this tesult to the right-hand side of (1.10),
we obtain the following theorem.

Theorem 1.2. A holomorphic function f(z) = f(z,,..., z,) of n variables in a
domain D < C" is arbitrarily many times differentiable in z,, . .., z; in D, and
all its partial derivatives 8™ ™~ f(2)/azF - - - 3z are holomorphic in D.
Moreover taking a polydisk U,(c) such that [U,(c)]< D, we have

aml-i‘---*-m'I

az;"‘ . aznm"f(ZI’ e ,Z,.)

='"n!---m»!J SQheosda) dl - - - dg,
[og

Qmi)" " ((l__zl)mlﬂ . (:,.—z,.)"'"'ﬂ (1.14')

in U(c). 1
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As in the case of functions of one variable we denote by
fimmd(z, L., 2,) the partial derivative

am,-&-----l-m,I

p Sz, ... 20) of f(z)=f(z...,2n).
zp»

az'l"l. o

Theorem 1.3. Let f(z) =f(z,, ..., 2,) be a holomorphic function in a domain
DcC" and c=(c,,..., c,) € D. Then in a polydisk U (., < D with centre c,
f(z) has a power series expansion in z,—c,, . .., Zy— Cn

o0

f@)= L amem{zi—a)™ o (za—)™, (1.15)

LaeessTin =0

which is absolutely convergent in U,(c). The coefficient a,,,...,, is given by

= 1 (m---m,)
Gy = S ). (1.16)

Proof. By replacing z, by z, — ¢, k=1,..., n, we may assume that ¢, = ¢, =
«+-=¢,=0. For a point z=(z,,...,2,)€ U,(0), p=(py,--.,p,), take
r=(r,...,r,) such that |z|<r <p, for k=1,..., n. Then z € U,(0), and
{U.(0)]= U,(0) = D. Hence by (1.10)

1 )J‘ nf(ﬁ,---,l..) dg, - - di, (1.17)

f(Z)z(— ({l_zl) e ({n—zn)

2@

Since |4 |=n> |z, k=1, ..., n, we have

1 =l E ( ﬂ) ”'l.,
G— 2 e me—o \Lk
Substituting these into the right-hand side of (1.17), we obtain a power
series expansion

Zk

148

=@<1, k=1,...,n
Tx

A2)= E - “rnr--m,.lf" RN SN
a =(_1)I J Y a2
my---m, 21" n gr‘n|+l e {:‘"‘Fl .

Letting M be the maximum of |f(£,,..., Z.)| on C", we have

M

_r'lnl... r"'”n’

|a"'|"""n
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which proves that the above power series is absolutely convergent in U,(0).
From (1.14), it is clear that @p,...m, =S™""™(0)/m,! - - m,!. B

(b) Power Series

In this section we consider a power series

P(z)=P(z;,...,2,)= ¥ Qmpem 27 "t 20"

with centre 0. If P(z) is a convergent at z, we denote its sum by the same
notation P(z).

Theorem 1.4. Let w=(w,,...,w,) be such that w,#0,...,w,#0. If P(z)
is convergent at z=w, then P(z) is absolutely convergent for |z|<
Iwil, . .., |za] <|wa|, and its sum P(z) is a holomorphic function of n variables
Zyy. .., 2y in U,(0) where p=(|w\, ..., |w.]).

Proof. For simplicity we consider the case n =2. The general case is proved
similarly. Since, by hypothesis, P(z) is convergent, there exists a constant
M such that |a,, ., wi"w5?| = M < +00. Hence

M

mml= o

where p, =|w,| and p,=|w,|. Therefore if |z,| < p, and |z,| < p,,

Y |z S M (ﬂ) 'y (@) "< 4o,

m,,m;=0 m=0 \ P my;=0 \ P2

namely, P(z) is absolutely convergent. Moreover taking arbitrary r, and r,
with 0<r, <p,, 0<r, < p,, we have

Q0
| @ 2 " 252 = | G | PTG, L |ammriiry<+oo
m;,my=0

for z=(z,, z;) with |z,|<r, and |z)|<r,. Therefore P(z) is uniformly and
absolutely convergent in [U,(0)] with r=(r,, r;), hence continuous in
[U.(0)]. Since r, and r, are arbitrary real numbers with 0<r,<p,
0 < r,< p,, and P(z)is clearly a holomorphic function in z, and z, separately,
P(z,, z,) is holomorphic in U,(0). 1
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Replacing the variables z, by z, — ¢, k=1, . . ., n, we obtain a power series

P(z—c)=P(zi—¢y...,2,=C)= L  Bmm(zi—c)™ - (z,—¢,)™

.....

with centre c=(cy,..., ¢ ).

Corollary. If a power series P(z—c) is convergent at w=(w,,..., w,) with
Wi ECp, ..., W, # Cy P(z—c) is absolutely convergent if |z; — ci| <|wi — cdl,
k=1,...,n, and its sum P(z - ¢) is a holomorphic function in U,(c), where
p=(wi—c),....lwa—ci). 8

The region of convergence of a power series P(z—¢) is the union D=
{J U,(c) of all polydisks U,(c) where P(z— c) is absolutely convergent. A
region of convergence D is a domain if it is not empty. In case n =1, the
region of convergence of a power series is an empty set, an open disk, or
the whole C itself, but in case n=2, the region of convergence of a power
series may take various forms.

The next theorem follows immediately from this Corollary and
Theorem 1.3.

Theorem 1.5. A function f(z) =f(z,, ..., z,) of n complex variables is holomor-
phic in a domain D c C" if and only if for every point c € D, f(z) has a power
series expansion P(z — c) which is convergent in some neighbourhood of c. 1

(c) Cauchy-Riemann Equation

First consider a continuously differentiable function f(z) of one complex
variable z in a domain D < C. Decompose z and f(z) into their real and
imaginary parts by writing z=x+iy and f(z) =u+iv. Then u and v are

continuously differentiable functions of the real coordinates x, y in D. Using
z and Z, we have

x=4a+2),  y=y(:-9).

Here z and Z are not independent variables, but considering them as if they
are independent, we define the partial derivatives of f(z) with respect to z

and Z by
§I=l(a_f_i,§/_‘>, i{:l(ﬁf+ia—j), (1.18)
3z 2\dx 4 8z 2\ox 9dy



