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Introduction

There are few phrases that give rise to such emotion in the world of the
traditional academic or scientific adviser than does ‘world modelling’.
Born of contentious argument, fostered by naive and simplistic propa-
ganda, the subject lives on in a world of exaggeration and partisanship.
It is a debate that has forced major issues into public awareness when
more traditional analysts would have suppressed them entirely, but on
the whole neither side has emerged from the debate with much credit.

One of the revealing features of the debate has been the way in
which so many of the contenders have revealed their ignorance of the
fundamental principles of systems modelling—an ignorance which seems
shocking until one tries to find a reasoned statement of those principles.
There is a serious gap in the literature at this point and this book is an
attempt to fill part of that gap. It is written by the Head of the Systems
Analysis Research Unit of the Department of the Environment in the
UK, which is one of the world’s leading research teams in this area.
The Unit is also unique in that it has approached its work without a
political axe to grind, and started with a careful review of what had already
been done before developing its own models.

The text is introductory—and should perhaps be made compulsory
reading for anybody wishing to express an opinion on a world model, let
alone build one. Its foundation is that of traditional science, and shows
how scientific ideas develop naturally into work of this kind. But it also
shows the constraints and conditions necessary for the development of a
satisfactory model. It started out to be an explanatory text, but has
become much more.

ROLFE TOMLINSON
General Editor



Preface

This is a book about world models though less than half of it deals
directly with past or potential world models. The reason for this lies
in the fact that world modelling brings into focus all of those deep seated
problems of models concerned with credibility, verification, forecasting
and ‘who changes what’ in real situations. Discussions about world
modelling tend to generate much heat. I have attempted to shed some
light in these pages, by examining the nuts and bolts of the modelling
process.

I make no apology for extending the field of inquiry to the frontier
with philosophy. All models, not only world models, force one to probe
the philosophical underpinning. The natural sciences are replete with
models of all sorts and the illustrative material for the early chapters
draws heavily on these. I have argued that operational researchers should
not forget their origins in the more traditional sciences.

My thanks are due to past and present members of the Systems
Analysis Research Unit, who contributed to that peculiarly astringent
style of critical discussion which forces the rejection of ill-founded
assertions.

1977 PETER ROBERTS
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1. Science and systems

Throughout recorded history writers have sought the marks that
distinguish human kind from beasts of the field. For the religious
it is a simple distinction between those with and those without
immortal souls. In times noted by a stronger taste for the empirical
the distinction was ‘man the toolmaker’. More appealing is ‘man the
artist’, and for a touch of whimsy, homo ludens—‘man the games
player’. No doubt there are others and they collectively illustrate a
higher level, an all embracing distinction, homo generalis—‘man the
generalizer’; the categorizer, botanist, propounder of natural law,
seeker for similarity amidst the differences, and unity within di-
versity. In one way or another we all enjoy the process of reduction-
ism, whereby the complexity of nature is explained by one general
principle. A frisson of pleasure and awe runs through us at the idea
that all the wealth of diversity in the physical world is created out of
a handful of elements, or that the primates have topologically
identical bone structures, or that all plane right-angled triangles
are governed by the Pythagorean rule (including all the plane right-
angled triangles that could ever be drawn).

As usual, snobbery and elitism abound. Rutherford, in his
usual pithy style, wrote on the lower orders of the scientific world:
‘There is physics, and there is chemistry (which is an inferior form
of physics)—and there is stamp collecting’. You may not like what
he says, but you know what he means. If Rutherford could claim
a place in the scientific aristocracy for physics because of the
generality of its statements, we should award honourable mention
to the system scientists. Their generalizations are of function, of
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(a) (b)

%J‘(c)

FiGURE 1.1 Three forms of oscillatory system: pendulum, vertical spring with
suspended mass, series circuit of inductor and capacitor.

modes of behaviour, of dynamic properties, but their interest is in
the structure, not the stuff. Consider the systems of Figure 1.1:

(a) Pendulum.
(b) Vertical spring with suspended mass.
(¢) Series circuit of inductor and capacitor.

The materials are very different, the parameters that determine
behaviour are specific to each example, but at a more abstract level
these systems belong to the same class. Ignore damping and a single
differential equation can be used to define the motion (whether of
pendulum bob, suspended mass or current in the circuit).

Thus,
d’x

drz — kx (1.1



SCIENCE AND SYSTEMS 3
where x is a measure of the displacement from equilibrium such that:

For the pendulum, x = angle of separation from the
vertical (for small angles, say < 5°). '

For the spring, x = vertical distance of the mass frém
the rest position.

For the circuit, x = potential difference betweerr thf: (
plates of the capacitor; ¢ = time; k = a 'positi¥e ;
constant unique to each system, but always with the Z
dimensions of the inverse square of time. o

It can be shown that the differential equation integrates to yield a
relation of the form:

x=asinw(t+ ¢) (1.2)

where @ = 1/4/k and a, ¢ are integration constants. This is the
equation of an oscillator—a sine wave: repetitive cycles in which
the sequence of x values recurs again and again every 2z/w units of
time.

Though simple in character, this equation and its solution
exemplifies that feature of systems which provokes interest. The
component parts—the bob, string, spring, mass, capacitor, in-
ductor—are none of them intrinsically oscillatory; but arranged in
suitable relationships, the combinations of components can possess
oscillatory properties. For larger systems, those with many com-
ponent parts, this idea is brought out by contrasting the micro
behaviour (that of the components) with the macro behaviour (that
of the total system), Thus, we may contrast the chaotic dance of the
gas molecules inside a balloon (the micro aspect) with the apparently
steady and uniform outward force per unit area keeping the balloon
inflated (the macro aspect). At the biological level, the outward
manifestations of muscular contraction derive from changes to the
concentrations of ions present in the cells. Hence the concept of
reducing the elaborate behaviour of biological entities to the
chemistry of their component molecules, and thence to the physics
rules governing which molecules are formed from given elements.

A more evocative term has been coined for the systems that we
call life forms: ‘emergent properties’. Those qualities we associate
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with life, like self-replication, are regarded as emerging inevitably
from large but dull amino acid molecules. It has to be said that the
virus or even the amoeba emerging in this way does not challenge
credibility, but that it takes an ardent reductionist to believe, say,
in Bach’s violin concerto in A minor ‘emerging’ from a mass of
protoplasm.

The newcomer could be forgiven for thinking that systems
science, systems engineering, systems analysis and cybernetics were
brand-new shiny products of the second half of the twentieth
century, since it is only in that period that the terms have come into
common use. The truth is, however, that important ideas in systems
thinking have a long pedigree, and some of the most striking and
successful results of the systems approach belong to classical science.
Indeed, so heavily dependent are many modern applications on
classic models that it is worthwhile tracing their precedents, if only
to appreciate that a few profound insights by the early giants can
spawn generations of model builders in emulation.

Of all the classical examples which could be used, the story of
the development of models for understanding the solar system is the
most striking, in the sense it conveys of successive penetration to
ever simpler components or principles from which the variety of
outward behaviour emerges: a reduction further and further back
to a most satisfying and elegant synthesis. In its last, or perhaps
one should say ‘current’ form, the application of the system rules is
called ‘celestial mechanics’. This has a prosaic flavour compared
with the ‘music of the spheres’, but it would not be inapposite to
describe the end result as a ‘divine simplicity’.

Celestial mechanics

The evolution in understanding of planetary motion has been of
interest to historians of politics, religion and scientific thought.!
Those planets visible to the naked eye (Mercury, Venus, Mars,
Jupiter and Saturn) have apparent motions which are perplexing.
For most of the time they move against the background of fixed stars
in stately regular courses, but from time to time each one slows and
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then makes a short, retrograde step followed by a further reversal
and return to forward motion. The first quantified explanation for
this effect of which we are aware is due to Ptolemy in about A.D. 100.
The ideas of reductionism and simple underlying principles are
there, based on an idea from Aristotle who had declared that perfect
motion is circular motion. So the Ptolemaic system is an ingenious
mix of epicycles and deferents, circles upon circles which, given a
geocentric system yields a rough approximation to the planets’
motions including the retrograde phases. The heliocentric system
(offered speculatively by Anaxogoras) was revived by Copernicus
with the advantage of explaining retrograde motion much more
elegantly, but Kepler took the next crucial step in abandoning the
circles for ellipses. The Kepler laws of planetary motion give very
good agreement with observation. Up to this point we see des-
criptions of the system with higher accuracy and using fewer para-
meters, but low in explanatory power (a mere five planets). Newton
postulated a breath-taking generalization that not only did the
elliptical orbits follow from a rule of attractive force between sun
and planet varying inversely with the square of the intervening
distance, but that there was a root cause of this, namely that every
particle attracts every other particle according to the product of the
particle masses, and inversely as the square of the particle separation.
This exquisitely simple proposition has tremendous explanatory
power: the motions of planets, comets, moons; tidal variation;
oblateness of the earth spheroid, precession of the equinoxes and
variation of pendulum swing with altitude-latitude. The remarkable
success which attended this essay, to reduce a great diversity of
celestial and terrestial phenomena to a universal underlying law,
has encouraged three centuries of scientists and a quarter of a century
of operational researchers and systems analysts to do likewise.

Urban mechanics 1
The number of objects larger than, say, a mile in diameter, that

occupy the space that we call the solar system is large. The main
features of the motions of these objects are puzzling, and the finer
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features baffling, without the guidance of the gravitational prin-
ciple. But if such a unification as the Newtonian law can be demon-
strated for one large system, there is reason to hope that similar
feats could be achieved for others. One of the best known recent
system applications following the same basic concept has been to
the traffic flows in urban areas.

The traffic flows in a modern city are on a scale which certainly
qualify for description as a ‘large system’. In orders of magnitude
there are 106 people, 10 links and nodes and 10° trips made in a
large city each year. The capital investment in roads, vehicles,
track, tunnels, bridges, etc. is a significant proportion of total
public investment; the running costs in fuel, lighting, maintenance,
policing and hospital care are at a similar level, and the time outlay
of travellers is perhaps a third of their disposable hours (time not
used in working, sleeping and eating). A set of transportation
modellers has, therefore, come into being with the mission of under-
standing and explaining the properties of the system. This is not just
an academic exercise: at any rate, the transportation modellers in
government service have the goal of estimating the cost effectiveness
of changes to the transport system.

People are not particles, and the ‘forces’ that drive them
hither and thither are not gravitational in nature; nevertheless,
gravity provides a useful analogy on which to build a transportation
model. Suppose the ground area of the city is divided into small
‘zones’. It is not unreasonable to assume that the number of trips
made between zone i and zone j would be inversely related to the
difficulty of getting from i to j. Although distance,; may be a rough
measure of difficulty, a preferred variable is cost,;, and because
people value time as well as money, cost of getting from zone i to
zone j should take account of both the monetary expenditure and the
perceived value of travel time (and conceivably, the cost of dis-
discomfort). Nothing can yet be said about the ‘deterrence function’,
the manner in which the number of trips;; depends upon the
generalized cost;;—certainly we have no right to assume a square
law dependence. Nevertheless, we can see that this law has the right
pattern of behaviour, providing steadily increasing deterrence as
cost increases.
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It is easy to see the other constituents of the transportation
model as being analogous to mass. The floor area of the buildings
in the zone has been proffered as one possible analogue to mass. A
more ingenious way of securing the analogue is to argue that the
number of trips from source i to destination j is proportional to the
total number of trips with source i to all other zones. Similarly, it
can be hypothesized that the number of trips with source i and
destination j is proportional to the total number of trips with desti-
nation j starting from all other zones, including i. These innocent,
and even apparently tautologous assumptions, have far reaching
implications. Expressed in mathematical form we have:

Let

T,; = number of trips source i, destination j,

¢;; = generalized cost of trip between i and j,

Y T,;= O, total number of trips source i to all destina-
tions,

Y T.;= D, total number of trips destination j starting
i from all origins,

and let f(c;;) be a deterrence function.
Then '
0.D;
T = AlB # 1.3
u= A8 (3
Compare this and the equation for the gravitational attraction F
between two point masses m; and m; separated by a distance d:

(1.4)

In this expression, one constant only is needed for all i, j—the
gravitational constant G. In the transportation expression, on the
other hand, many constants 4; and B; are required specific to the
contexts of i and j respectively. The reason for this modification,
rather than using a single universal constant, can be understood by
imagining an increase of O; to O;x 10 and of D; to D, x 10. Clearly
the resulting T;; would not be as large as X 100 compared with
the original T7;. Such a manner of 7;; increase would mean that total

B
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trips among all zones was dependent on the boundaries chosen for
the zones, and this choice is arbitrary.

Before developing the transportation model further, it will be
helpful to consider another piece of invention from classical science.

Gas Mechanics

A gas consists of a large number of molecules moving about and
rebounding from each other and from the walls of the containing
vessel. If it is assumed that these motions are random, that there is
no preferred direction of motion for any particular molecule at any
specified time this provides a sufficient specification to define a
model from which general deductions can be made using probability
methods. In Appendix 1 the expressions for the distribution of
molecular density and of molecular energy are derived. It appears
that the most likely distribution of molecules is that in which equal
volumes within the vessel contain equal numbers of molecules, the
density tends to be uniform throughout the vessel. This is an un-
surprising result but if the same technique is applied to the energies
of the molecules, an unexpected result appears. In fact the most
likely distribution is one in which the numbers of molecules in
equi-width energy bands, of successively higher mean energy,
declines geometrically. A plot of numbers of molecules against
energy of those molecules is negative exponential in form. This
result is far from obvious and quite elaborate experimental means
has been needed to verify that, indeed, the energy distribution of
real gases conforms to this rule.

Urban mechanics 2

This technique of modelling a system by deducing the most probable
amongst all its possible states has prompted A. G. Wilson? to devise
a similar approach for transportation. In Appendix 2 it is shown
that a treatment of trip making, strictly parallel with that used to
model gas molecules, can be used to identify the form of the deter-
rence function. The two constraints applying in the gas system are:



