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Preface

Neural networks have been used extensively to model human cognition. Human
reasoning and language are two areas where, so far, no computational system
has reached the level of human performance. There is much interest in neural
network models as they provide an approach to the modelling of cognition
different from that of traditional symbolic artificial intelligence (AI). Perhaps
because of the success of neural network systems in modelling some aspects of
cognition and human language processing, many questions have been raised by
the symbolic Al community as to the representational power of connectionist
systems. Some of these questions are discussed in depth in this book.

Most of us are familiar with images of robots, and often these robots can
be seen to be performing useful tasks. However, most of the robots we are
familiar with have an important limitation. They must be pre-programmed for
a fixed environment and a fixed set of tasks. If their environment changes they
fail ungracefully. Adaptive robots using neural computing techniques are able
to change their behaviour as their environment changes.

This book is designed to give an overview of some of the many perspectives
that neural computing gives on cognition and autonomous robotics. It is not
written as an introductory textbook; it is assumed that the reader has some
previous knowledge of neural networks and an understanding of their basic
mechanisms. The book is divided into several parts:

®  Representation. This part delves into questions on the representational
power of neural networks and discusses the use of information theory in
neural computing.

e Cognitive modelling. The use of neural networks for cognitive modelling
is discussed, including both the modelling of human reasoning and the
implications of neurophysiological data.

e  Adaptive robotics. Robots which can adapt to their environment are
described, together with a discussion on biologically realistic learning
mechanisms.

Many chapters in the book are cross-referenced to a companion volume
Neural Network Analysis, Architectures and Algorithms (1997, Institute of
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Xiv Preface

Physics Publishing), which can be seen as complementary to this volume as
it contains chapters on the following areas:

e  Understanding and simplifying networks. Methods for extracting
information about what a trained neural network has learned are outlined,
together with a method for simplifying network architectures based on
information theory.

e  Novel architectures and algorithms. Two novel hardware implementations
of neural networks are described, together with a discussion of fast training
algorithms for feed-forward network architectures.

e  Applications. Some applications of neural networks in the diverse fields
of control (including neuro-fuzzy control), data compression and target
identification are discussed.

Hopefully the following chapters will clarify some of the many fields in
which neural computing is expanding in its attempts to model human cognition
more accurately and produce flexible and adaptive robotic systems. Perhaps in
the (possibly very distant) future these two areas will meet, and we will have
robotic systems with human-like capabilities of thought and speech.

No textbook can ever hope to give a comprehensive review of the myriad
directions in which current research is headed. However, this volume attempts
to give a flavour of some of the most promising areas.

A Browne
July 1997
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PART 1

REPRESENTATION

Now that the hysteria has died down about neural computing being a magical
solution, both to the problems faced by cognitive scientists in modelling human
cognition and to the problems faced by engineers in developing intelligent
solutions to solve practical problems, it is time to take stock of the situation.
Several questions can be asked:

How powerful are neural networks? What sort of things can they represent
and what operations can they perform? Are there limits to the sort of operations
they can perform and the types of structures they can represent? How do they
compare to symbolic computational systems?

Because of the recent popularity of neural computing and the perhaps
extravagant claims put forward by some of its proponents, the field has come
under fire from many directions. This part of the book concentrates on aspects
of the representational power of neural networks and how some of the challenges
regarding this representational power have been answered. A formal analysis of
what is happening inside neural network systems, using information theory, is
also discussed.






Chapter 1

Challenges for Neural Computing

Antony Browne
School of Information Systems, Nene College, UK
antony.browne @nene.ac.uk

1.1 Introduction

In recent years neural networks have been touted as the miracle solution, both to
the problems that cognitive scientists face in trying to build models of cognition
and to the practical problems that engineers face in trying to develop intelligent
solutions for commerce and industry. However, neural networks have also been
subject to much criticism. Some of these criticisms, together with the attempts
that scientists and engineers working with neural networks have made to answer
them, are given below.

1.2 Two schools of thought for intelligent systems

A substantial proportion of artificial intelligence (AI) research, and the
application of the technology produced from this research, is based on the
assumption that all the important aspects of human cognition, and all the
useful tasks which humans require their machines to do, may (at some
time) be described or carried out by a computational model. This view
(computationalism) follows on from the belief that any aspect of cognition or
practical task can be modelled computationally (the Church-Turing thesis). This
can be contrasted with the approach of some theorists who hold that certain
properties of the mind (and hence some properties that we may wish to capture
in practical intelligent systems) cannot be captured algorithmically [228]. Many
researchers in cognitive science believe that implementation details are irrelevant
for cognition, as do many engineers who implement the practical intelligent
systems currently used in commerce and industry. As a result of this some
of those involved with these systems have not tried to obtain inspiration from
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4 Challenges and new directions

the physical structure of the brain, but have instead concentrated on modelling
the abstract structure of the mind and the practical application of the associated
technology. In recent years there has been much disagreement as to how to
produce systems with the desired properties and research in intelligent systems
can be seen to have split into two schools. These are the classical (in so far as
they have been researching in the field of Al for the longest time) symbolic Al
school and the connectionist school. It is a matter of some debate as to which
school actually has the most powerful model and members of the connectionist
school implementing their models with neural networks are currently attempting
to face up to the criticisms levelled at their models by the symbolic AI camp.
One could argue that since both neural networks and classical symbolic systems
are universal Turing machines [111], at one level of abstraction there is no
distinction between them. However, in the nature of the representations they
use, in their observed performance given different tasks, and in their adequacy
for the modelling of intelligent systems, there are many differences between
these two schools of thought.

1.2.1 The symbolic AI school

The classical symbolic school states that the correct level at which to model the
mind is that of the symbol, an entity in a computer program that is taken to refer
to an entity in the real world. The main assumptions on which the symbolic
Al paradigm rests were first explicitly stated under the ‘physical symbol system
hypothesis’ [210] which states that ‘a physical symbol system has the necessary
and sufficient means for general intelligent action’. In this definition:

e  Necessary means that any physical system that exhibits general intelligence
will be an instance of a physical symbol system (PSS).

e  Sufficient means that any physical symbol system can be organized further
to exhibit general intelligent action.

e  General intelligent action means the same scope of intelligence seen in
humans.

This implies that in real situations behaviour can occur that is both
appropriate to the needs of the system and adaptive to the demands of the
external environment (within some physical limits imposed by processing speed
and memory requirements). This hypothesis states that an entity can only be
intelligent if it instantiates a PSS. Symbols correspond to unitary concepts and
are taken to represent objects, events, relations between objects and relations
between events. In this way the word symbol comes to represent a concept
or entity we can put a meaningful label on such as ‘apple’ or ‘dog’. At
any one time a symbol represents a single entity or concept. Symbols are
atomic, they may combine to form symbol structures, but individual symbols
may not be broken down. An obvious example of such symbols occurs in
programming languages such as Prolog, where atoms such as ‘man’, ‘fred’, or



