

8960063

Computer
aided tools
for VLS|
system
design —

Editedby
G.Russell [HIHNRIUNA

0000000

Published by: Peter Peregrinus Ltd., London, United Kingdom
©1987: Peter Peregrinus Ltd.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means—electronic,
mechanical, photocopying, recording or otherwise—without the prior
permission of the publisher.

While the author and the publishers believe that the information and
guidance given in this work is correct, all parties must rely upon their own
skill and judgment when making use of it. Neither the author nor the
publishers assume any liability to anyone for any loss or damage caused by
any error or omission in the work, whether such error or omission is the
result of negligence or any other cause. Any and all such liability is
disclaimed.

British Library Cataloguing in Publication Data

Computer aided tools for VLSI system design.
—(IEE computing series; 9)
1. Integrated circuits—Very large scale
integration—Data processing
I. Russell, G. II. Series
621.381'73 TK7874

ISBN 0-86341-093-6

Printed in England by Billing and Sons Ltd.

EEEEEEEEEEEEEEEEEEE

computer
aided tools
for VLSI
system
design

Other volumes in this series

Volume 1 Semi-custom IC design and VLSI
P. J. Hicks (Editor)
Volume 2 Software engineering for microprocessor systems
P. G. Depledge (Editor)
Volume 3 Systems on silicon
P. B. Denyer (Editor)
Volume 4 Distributed computing systems programme
D. Duce (Editor)
Volume 5 Integrated project support environments
J. A. McDermid (Editor)
Volume 6 Software engineering '86
D. J. Barnes and P. J. Brown (Editors)
Volume 7 Software engineering environments
I. Sommerville (Editor)
Volume 8 Software engineering—the decade
of change
D. Ince (Editor)

List of Contributors

Chapters 1, 4 and 5
G. Russell, University of Newcastle upon Tyne, UK.

Chapter 2
H. G. Adshead, ICL, Manchester, UK.

Chapter 3
T. J. Kazmierski, University of Southampton, UK (on leave from Technical

University of Warsaw, Poland).

Chapter 5
K. Baker, Hirst Research Centre, Middlesex, UK.

Chapter 6
D. J. Kinniment, University of Newcastle upon Tyne, UK.

Chapter 7
P. Ivey, BTRL, Ipswich, UK.

Chapter 8
R. A. Cottrell, UMIST, Manchester, UK.

Chapter 9
M. R. McLauchlan, University of Newcastle upon Tyne, UK.

Chapter 10
E. G. Chester, University of Newcastle upon Tyne, UK.

Chapter 11
S. G. Smith, University of Edinburgh, UK.

Chapter 12
J. D. Wilcock, Plessey Research (Caswell) Ltd, UK.

Chapter 13
D. Warburton, ICL, Manchester, UK.

Chapter 14
M. H. Gill, STC Technology, Harlow, UK.

Chapter 15
A. P. Ambler, Brunel University, Middlesex, UK.

Preface

Over the past decade the use of Computer Aided Design (CAD) Tools in the
design of integrated circuits has become well established. However, in order to
gain acceptance, in the design community at large, these tools had to be
introduced gradually. After a short period of time it was realised that these
tools were becoming inadequate as circuit complexities increased due to the
advancements made in fabrication technology. Subsequently, CAD research
activities were focused on attempting to develop more efficient algorithms to
cope with the problem of complexity. This approach, however, could only
provide a temporary solution, since the fundamental problem was not that the
CAD tools were inefficient, necessarily, but the design style into which they
were introduced was simply incapable of supporting the design of complex
circuits.

Recently, design styles based on hierarchical decomposition or ‘divide and
conquer’ techniques have evolved which are more amenable to CAD
techniques, since they limit the amount of data and design constraints to be
processed at each stage of the design cycle, resulting in reduced design times
and costs through the more efficient use of man/machine resources.

Although, CAD tools have now been integrated into each stage of the
design process, the IC design community, which is continually increasing, is
not fully aware of the arsenal of CAD tools available for integrated circuit
design. Consequently the objectives of the 1st IEE Vacation School on CAD
Tools for VLSI System Design, held at the University of Newcastle upon Tyne
in July 1985, were twofold. First, to review the range of CAD Tools available
for design and, thereafter, in the light of projected increases in chip
complexity, anticipated through improvements in device technology, to
discuss the limitations of these tools. Second, to introduce the next generation
of design tools and associated design methods which should restrict, to within
acceptable limits, the major obstacles to the pervasive use of VLSI, namely
design times and costs. The contents of this book comprise the lectures given
during the course, which are self contained and cover a wide range of topics
related to the use of CAD tools in the design of integrated circuits.

G. Russell

Contents

List of contributors

Preface

1 Introduction

21
22
23
2.4
2.5
2.6

Computer aids for VLSI system design — an overview

Introduction

Why VLSI needs CAD

Basic CAD concepts

DA tools

Current and future DA topics
Conclusion

3 Techniques for circuit simulation

31
3.2
33
3.4
3.5
3.6

4.1
4.2
4.3
4.4

Introduction

Mathematical model and equation formulation
Solution of nonlinear differential equations
Standard solution of linear equations
Relaxation methods

Conclusions

Logic simulation algorithms and techniques

Introduction

Simulation process

Behavioural modelling of gate level functions
Conclusions

xi

10
11
15
16
18

19
19
19
20
24
25
30

32
32
33

42

vi

10

Contents

Testing VLSI circuits

5.1 Introduction

5.2 Design for testability

5.3 Fault modelling

5.4 Practical CAT tools

5.5 Automatic test equipment

5.6 Conclusions

Autolayout

6.1 Introduction

6.2 Placement methods

6.3 Routing

6.4 Conclusions

Symbolic design of VLSI circuits

7.1 Definition of symbolic design

7.2 Short history of symbolic design

7.3 Objectives of symbolic design

7.4 Floor planning and high level design
7.5 Symbolic cell design

7.6 Algorithms for spacing

7.7 Chip assembly

7.8 Algorithms for abutment

7.9 Conclusions

IC layout verification

8.1 Introduction

8.2 Automated design techniques

8.3 Analysis tools for semi-custom design
8.4 Analysis tools for full-custom design
8.5 Exploiting hierarchy

8.6 Databases for IC design

8.7 Conclusions

High level languages in design

9.1 Introduction

9.2 First developments — bristle blocks
9.3 Influence of programming languages
9.4 Special purpose design languages
9.5 Conclusions

PLA design tools
10.1 Introduction
10.2 Structural variants

44
44
46
50
52
63
63

66
66
68
71
79

81
81
82
85
87
87
88
90
92
93

95
95
95
96
97
102
104
105

106
106
108
110
119
122

124
124
125

11

12

13

14

10.3
10.4
10.5

Contents

Computer tools
PLA testability
Conclusions

Silicon compilation — design and synthesis beyond CAD

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Introduction

What is a silicon compiler

Silicon and software compilers

Design leverage and complexity pyramid
Restrictive practices

Review of the field

The Carver connection

Modern approaches

Conclusions

CAD systems

12.1
12.2
12.3
12.4
12.5
12.6
12.7

12.8
12.9

Systems

Factors common to all design activity

Evolution of IC design systems

Current requirements for IC design systems

The database management system as a solution

Features of database management systems

Differences between IC and general database management
systems

Nature of IC data

Preparing a data model

12.10 Programs interfacing to the IC database
12.11 Conclusions

Data management

13.1
13.2
13.3
13.4
13.5

Introduction
Requirements
Alternative approaches
Design control in DA-X
Conclusions

Verification of digital systems

14.1
14.2
14.3
14.4
14.5
14.6

Introduction

What is verification?
LSM

HOL

LTS

Conclusions

vii

128
132
134

135
135
136
136
138
139
139
144
145
146

148
148
148
150
151
151
152

153
153
155
159
159

160
160
160
161
163
166

167
167
167
168
170
173
176

viii Contents

15 Hardware CAD tools

15.1
15.2
15.3
15.4
15.5
15.6

‘Index

Introduction

Acceleration of logic simulation
Bottlenecks

General purpose accelerators
Selection of accelerators
Conclusions

178
178
179
182
184
185
186

188

Chapter 1

Introduction

What is CAD? CAD, in the context of the design of integrated circuits can be
defined as the use of computers for the collection, manipulation and storage of
all the data associated with the design. More specifically, CAD tools are used
to evaluate design alternatives and tradeoffs, to construct the basic com-
ponents used in the design, to assemble and interconnect these components
into the final layout of the design and finally to generate the data and test files
used in mask making and testing the device after fabrication.

Itis well established that CAD techniques are essential to the design of Very
Large Scale Integrated (VLSI) Circuits in order to process, efficiently and cost
effectively, the vast amount of data associated with the design of these
complex devices. The reason given for using CAD in VLSI circuit design, to
some extent, belittles the important role that CAD now plays in ensuring that
IC products from a given company retain the competitive edge in the market
place. The factors which make an integrated circuit competitive are
performance, functionality, cost and turn around time. In general perform-
ance is a function of the processing technology, this has reached a very
advanced state of development, to the extent that further gains in performance
through improvements in technology are extremely expensive. Functionality
reflects the ingenuity of the designer, again good designers are expensive; the
functional capability of a circuit can be duplicated and superseded, hence the
competitive edge gained in this way is marginal. The remaining factors are cost
and turn around time, these are directly associated with CAD systems; hence
the efficiency of the CAD systems used in IC design is now playing an
extremely important role in maintaining a competitive edge in the market
place for IC products. In order to maintain a competitive edge it is essential
that the CAD system has a wide range of CAD tools, the ability to support
various design styles and have an extensive library of functional cells. If the
CAD system is not to fade into obsolescence it must also contain a flexible
database management system, since this is the foundation on which all efficient
CAD systems are built. The database system permits new tools to be
interfaced, readily to the system, it controls the versions of cell libraries used in

2 Introduction

a design, it ensures the integrity of design changes throughout the various
representations of a design and also allows changes in design style or
technology to be accommodated, readily, in the system. A further factor which
affects the efficiency of the CAD system is the types of tools that it contains. If
the system has many analysis tools, it infers that the design time will be long
and expensive, since the CAD system will impose few constraints on the
designer, requiring long verification runs to ensure that the layouts are error
free. Although the efficiency of these systems can be improved by developing
analysis algorithms which exploit the structure of the layout in the verification
procedures or have the analysis algorithms mapped onto special purpose
computer architectures, the competitive edge gained in this way only lasts a
short time. However, if the system contains synthesis tools, design times are
drastically reduced since the designer is constrained; the essence of these tools
is ‘correctness by construction’. Furthermore, the competitive edge gained will
last longer since the capabilities of these systems are not fully explored, leaving
ample opportunity for improvement and also the capabilities of synthesis
systems are more proprietary hence more difficult to duplicate.

Although the concept of using CAD tools in the design of digital systems has
been around since the mid 1950s, it has only been used in IC design since the
mid 1960’s. The reason for this is twofold; first the concept of using computers
in the design of digital systems was brought into disrepute, throughout the late
50’s and early 60’s due to the inadequacy of the computer systems (in terms of
computational power, storage facilities and availability) to solve the problems
which occurred in the design of digital systems. Second, the complexity of the
task in designing integrated circuits at that time, was still amenable to manual
methods, and there was a reluctance to change to CAD techniques which, in
the past, had been shown to be inadequate. However, as circuit complexity
increased manual methods were becoming inadequate and alternative design
techniques were sought. By this time there had been a considerable
improvement in computer technology, with respect to both hardware and
software. Subsequently, some simple layout tools evolved which permitted the
designer to digitise a layout into a computer and have a plot produced to
determine what errors had been made, and thereafter have the drive tapes for
the mask making equipment generated automatically. The introduction of
interactive graphics greatly enhanced the designers capability to edit circuit
layouts stored in the computer. At the same time designers were becoming
interested in the use of circuit simulation as a means of verifying the
operational characteristics of their circuits. Previously breadboarding tech-
niques had been employed to simulate the behaviour of the circuit, however
due to the differences in device size and parasitic capacitances, particularly as
IC’s became more complex, breadboarding could no longer be used as a means
of checking, satisfactorily the performance of the circuit. As the complexity of
integrated circuits increased, simple functions which were interconnected on a
printed circuit board were now integrated into the same circuit. Consequently

Introduction 3

IC designers had a requirement for placement and routing programs, which
they subsequently borrowed from the printed circuit board designers and
modified to suit their own requirements. Also, the complexity of the
integrated circuits being designed was becoming too large to be efficiently
simulated at circuit level, consequently gate level simulators were also
borrowed from the designers implementing systems on printed circuit boards.
However, by this time some designers had become interested in developing
their own suites of CAD tools and several tools evolved which were directed at
the time consuming tasks, for example, design rule checking, connectivity
checking, layout to function verification. The increased functionality of
integrated circuits, also, permitted the development of computer systems with
better performance characteristics, which allowed computational intensive
CAD tools for example, fault simulators and automatic test pattern generators
to be developed. A major factor which influenced the acceptance of CAD
tools into the IC design process was that they were introduced incrementally
and were oriented towards a psuedo-manual design style. In this design style
the layout is considered to be a monolithic entity without any structure,
consequently as circuit complexity increased the capabilities of the CAD tools
were far exceeded due to the vast amounts of data to be processed. To combat
the complexity problem a new generation of CAD tools evolved, which could
be classed as revolutionary, since they imposed a design style upon the user. It
constrained the designer to using function blocks, for example ROMs, RAMs,
PLAs and Shift Registers, whose regularity could be used to advantage in
improving the efficiency of the CAD tools which would process the layouts.
Simple design languages also evolved to describe the layout of these regular
structures at a high level, from which a detailed layout description could be
generated automatically to prescribed design rules. PLA layouts could be
derived directly from their logical specification. This style of design required
the designer to consider the circuit to comprise functions more complex than
basic gates, this resulted in the development of high-level simulation tools,
which also improved the simulation efficiency of large circuits. The basic trend
in the CAD tools, currently under development, is that they perform more of a
synthesis rather than an analysis function, for example PLA generators and
more recently silicon compilers, whose objective is to automatically generate
the complete layout of a circuit from its behavioural description. The trend
towards the development of synthesis emphasises the importance of these
tools in maintaining the competitive edge in a CAD system.

The individual chapters in this book describe some of the tools discussed in
the preceding paragraphs in more detail.

Chapter 2 discusses, in general terms, the need to use computers in the
design of VLSI circuits. The VLSI design process is described as a major data
processing problem involving vast amount of data, complex algorithms, CPU
intensive processes and many aspects of man machine interaction. Typical
CAD tasks are outlined and the distinction is drawn between Design

4 Introduction

Automation and Computer Aided Design. The Chapter ends with a brief
survey of future trends in CAD tools for VLSI design.

Chapter 3 is the first of three chapters discussing tools which may be
classified as behavioural analysis tools for both faulty and fault free circuits.
This chapter is concerned with techniques of circuit simulation and describes
the mathematical modelling and equation formulation of non-linear circuits
with lumped elements. Techniques used to provide approximate solutions to
systems of non-linear differential equations are also discussed and compared
with respect to their numerical efficiency and stability properties. The
transformation of a system of non-linear ordinary differential equations into
non-linear algebraic equations and a final to a set of linear algebraic equations
is also described and a simplified algorithm, which may be used in a classical
circuit level simulator for this purpose, is outlined. Finally, in view of the
increase in the size of circuit to which this level of simulation is applied and the
subsequent increase in solution time, Relaxation Methods are introduced as a
means of reducing equation solution time.

Continuing with the topic of simulation Chapter 4 describes the ‘anatomy’ of
a gate level simulator. The basic components which make up a simulator are
described together with two techniques for modelling a circuit for the purpose
of simulation, namely the Compiled Code and Table Driven Model. The basic
simulation algorithm is outlined, together with the basic techniques for
evaluating the change in logic state on the output of gate and scheduling events
or gate changes in the simulator. The factors which affect the accuracy of the
simulation results are also discussed. The problems of using standard
simulators to model devices, for example pass transistors, which can have a
dynamic state or exhibit a bilateral switching characteristic are outlined. The
chapter is concluded with a section outlining the advantages of describing
functions using a Behavioural Modelling language and the possibility of using
this language to describe analogue functions so that they can be simulated in a
digital environment.

A major issue in the design of VLSI circuits is that of testing the devices after
fabrication, this topic is addressed in Chapter 5. The basic problems in testing
VLSI devices are discussed and this is followed by a brief description of the
various Design for Testability (DFT) techniques, namely Ad-hoc, Classical
Structured and Neo-Structured methods. Although DFT facilitates the testing
of circuits, the problem, in general of generating the test patterns in the first
instance, still remains. An important aspect of test pattern generation is fault
modelling, the major categories of faults considered in testing are outlined,
namely stuck-at-faults, bridging faults, stuck-open faults and pattern sensitive
faults. An essential adjunct to test pattern generation is Fault Simulation
which is used to determine the fault coverage of the test patterns, the
techniques used, namely Parallel, Deductive and Concurrent Simulation are
outlined. The basic technique for generating tests in combinational circuits
using the Boolean Difference Method and the D-Algorithm are also

Introduction 5

described, together with a technique called PODEM which was designed to
generate tests in very large combinational circuits. The chapter is concluded
with a brief description of Testability Analysis Tools and some comments on
Automatic Test Equipment.

Chapter 6 is the first of six chapters which deals with topics related to the
physical synthesis of a layout. As the complexity of an integrated circuit
increased the functions normally connected together on a printed circuit board
were now integrated at chip level and designers had a requirement for
placement and routing tools, these topics are discussed in Chapter 6. In order
to make the layout and interconnections of modules on either an integrated
circuit or printed circuit board a tractable problem, the processes of placement
and routing are considered separately. The placement algorithms which are
outlined in this chapter are the Cluster Development and Force Directed
techniques, techniques to improve placements are also discussed together with
methods of avoiding wire congestion during the routing phase. An essential
part of the layout problem is that of routing the interconnections between the
placed modules, the basic method described, to determine the interconnection
path, is Lee’s Algorithm, together with several heuristics to reduce the routing
time. The chapter concludes with a description of Channel and Hierarchical
routers.

The traditional method of designing basic logic elements in a layout
comprised drawing out the individual shapes on each mask layer required to
realise a transistor, contact etc., in the physical circuit. This process is very
time consuming and error prone. Recently, basic cell design has been made
more efficient by the use of symbolic design tools, these are discussed in
Chapter 7. The major techniques described are the Fixed and Relative grid
approaches, in the Fixed Grid technique all the design rules are obeyed on
entry of the cell description, however using the Relative Grid approach it is
necessary to modify the layout to obey various design rules, hence a necessary
adjunct to this approach is a Compactor program; several compaction
algorithms are briefly described. The technique of using symbolic methods at a
higher constructional level are discussed in the form of Floor Planning. The
chapter is concluded by a brief description of chip assembly techniques and cell
abutment algorithms used in the formation of complex functional blocks from
subcells.

Chapter 8 discusses the range of layout analysis tools used in IC design to
detect any physical design errors which will either reduce the yield on the
fabricated circuit or realise a logic function other than that intended by the
designer. The layout tools are classified as either semi-custom or custom, since
the semi-custom design style obviates the necessity of using certain analysis
tools required in custom design. The major analysis tools used in semi-custom
design are wire delay extractors required to determine circuit delay for post
layout simulation and circuit verifiers which check that the interconnection of
modules on the layout matches that described at a higher level of abstraction.

6 Introduction

In a full custom design the designer has fewer constraints, and hence the layout
is more likely to contain errors, consequently a wider range of tools are
available, for example layout rule checkers, circuit extractors which perform
layout to circuit verification, parameter extractors for circuit simulation,
electrical rule checkers and netlist to layout verifiers. Techniques to improve
the efficiency of these tools by exploiting hierarchy in the circuit are also
discussed together with the problems encountered in designs which have
overlapping cells. The difficulties in checking the correspondence between the
actual and extracted circuits are discussed, together with the role that a good
database plays in this function.

Chapter 9 describes the use of High Level languages in the design of
integrated circuit layouts. The chapter starts with a brief review of the manual
techniques of designing IC layouts and the description of some low level mask
layout description languages, outlining their limitations. Some of the unique
aspects to be considered when attempting to define a high level language for IC
design are identified together with advantages to be gained by using high level
languages in the design process. The Bristle Block system is then identified as
an example of a first attempt at using high level languages in the design
process. The basic disadvantages of the Bristle Block approach are subse-
quently outlined, and the use of procedural design languages, in overcoming
these disadvantages, are discussed. The issues involved in attempting to
capture structural and behavioural aspects of a design using procedural types
of design languages are also discussed and several examples of existing
languages are given. The chapter concludes with a section on special purpose
high level languages for IC design in contrast to the use of standard languages
with embedded procedures.

A major problem in the design of datapath circuits is the implementation of
the control logic for the datapath. The most effective way of implementing this
logic is to use a PLA design style. This task has been made easier by the
introduction of PLA generators, which may be described as a crude form of
silicon compiler and are discussed in Chapter 10. The standard input to a PLA
generator is a set of Boolean equations and the output is an regular array
structure which realises the Boolean equations. A straight implementation of
the Boolean equations, however, results in an inefficient structure in terms of
size and performance. Subsequently optimisation techniques, for example
logic minimisation and PLA folding methods, to improve the performance of
the PLA are discussed. Variations of the basic PLA structure are also outlined,
for example Weinberger Arrays and Storage Logic Arrays together with the
formation of FSMs from PLAs by including latches between the secondary
input and outputs. The chapter concludes with a section dealing with the
testing of PLAs and methods used to enhance their testability.

Chapter 11 is the last of the six chapters considering the different aspects of
the synthesis of layouts and is concerned with a description of Silicon
Compilers. The introduction of the concept of silicon compilers into the design

