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Preface

This book is concerned with computer simulation of scientific and engineer-
ing phenomena in a fashion which is consistent with the two principles:

(1) Al things change with time, and
(2) All material bodies consist of atoms and/or molecules.

Applications include solitons, crack development, biological sorting, saddle
surfaces, rotating tops, bubbles in liquids, liquid surface adhesion, relativis-
tic oscillation and development of turbulent flows. Theoretically we develop
discrete equations with conservation laws which are identical to those of
continuum mechanics. Our molecular studies are in complete accord with
modern nanophysics.

Graduates and professional researchers in mathematics, physics, mate-
rials science, fluid dynamics, and electrical and mechanical engineering will
find this book a contemporary resource for their work on modelling physical
phenomena.

Finally, I wish to thank Ann Kostant, Executive Editor, Mathematics
and Physics, Birkhauser, Boston, for permission to use material from my
book PARTICLE MODELING (1997).

Donald Greenspan
Arlington, Tezxas 2004



Problem Statement

The general N-body problem is usually formulated for N > 2 as follows.
In cgs units and for i = 1,2,..., N, let P; of mass m; be at 7, = (4, ¥s, 2i),
have velocity ¥, = (v; , Vi,y, Vs, ), and have acceleration @; = (ai,¢, @iy, ai,z)
at time t > 0. Let the positive distance between P; and Pj, ¢ # j, be
rij = 15; # 0. Let the force on P; due to P; be F"ij = F;j(rij), so that the
force depends only on the distance between P; and Pj. Also, assume that
the force F i on Pj due to P; satisfies fji = —F‘i]-. Then, given the initial
positions and velocities of all the P;,i = 1,2,3,..., N, the general N-body
problem is to determine the motion of the system if each P; interacts with
all or part of the other P;’s in the system.

The prototype N-body problem was formulated around 1900 and was
a collisionless problem. In it the P; were the sun and the then known eight
planets and the force on each P; was gravitational attraction. However, since
1900 and up to the present, a variety of other N-body problems have come
to be of interest in the sciences and in engineering. These problems will
be categorized according to the choices N = 1,2 < N < 100,100 < N <
10000,10000 < N. These categories have been determined in accordance
with the capabilities of a Digital Alpha 533 personal scientific computer,
which has been used for all the examples to be described.

Note immediately that a 1-body problem is not a special case of the
general N-body problem, which has been formulated only for N > 2.

Finally, observe that each of the models to be studied is nonlinear.
Linear models often have only limited life spans which end when refinement
becomes essential.

xi
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Chapter 1

The 1-Body Problem

1.1. Nonlinear Oscillation

An important class of 1-body problems is found in the study of nonlinear
oscillators. An oscillator is a body which moves up and back over all or part
of a finite path. The prototype nonlinear oscillator is the swinging pendulum
and in this section we turn attention to it. Other nonlinear oscillators can
be treated in the fashion to be developed.

Consider a pendulum, as shown in Figure 1.1, which has mass m cen-
tered at P and is hinged at O. Assume that P is constrained to move on
a circle of radius [ whose center is O. Let 6 be the angular measure, in
radians, of the pendulum’s deviation from the vertical. The problem is that
of describing the motion of P after release from a position of rest.

It is known from laboratory experiments that the motion of the pen-
dulum is damped and that the length of time between successive swings
decreases.

Using cgs units, we reason analytically as follows. Assume that the
motion of P is determined by Newton’s dynamical equation

F = ma. (1.1)
Circular arc N P has length 16, so that a = g—;(lﬁ) = 1. Thus, (1.1) becomes
F =mié. (1.2)

In considering the force F' which acts on P, let F; be the gravitational
component, so that

F, = —mgsin6, g >0, (1.3)
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Figure 1.1. A pendulum.
and let Fy be a damping component of the form
F, = —cf, ¢ a nonnegative constant. (1.4)

Assume that these are the only forces whose effects are significant. Then
F = —mgsinf — b,

so that (1.2) reduces readily to
6+ —=6+2sing=0 (1.5)
ml l

The problem, then, is one of solving (1.5) subject to given initial conditions

(0) =, 6(0)=0. (1.6)

For illustrative purposes, let us consider the strongly damped pendulum
motion defined by

6+ (0.3)0 4+ sinf = 0 (1.7)
0(0) = i-n, 6(0) = 0. (1.8)

No analytical method is known for constructing the exact solution of this
problem. Numerically, then, set ¢ = z and § = y and solve (1.7) with
At = 0.01 using Kutta’s fourth order formulas, which are given in generic
form in Appendix I. The computation is carried out for 15000 time steps,
that is, for 150 seconds of pendulum motion. The first 15.0 seconds of pen-
dulum oscillation is shown in Figure 1.2, where the peak, or extreme, values
0.78540, —0.47647, 0.29335, —0.18156, 0.11259 occur at the times 0.00, 3.28,
6.49, 9.68, 12.86, respectively. The time required for the pendulum to travel
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Figure 1.2. Damped pendulum motion.

from one peak to another decreases monotonically and damping is present
during the entire simulation, in agreement with experimentation.

Any attempt to linearize (1.7) results in an analytical solution which
either does not damp out, or has a constant time interval between successive
swings, or both.

1.2. Concepts from Special Relativity

Interestingly enough, there exist some very important 1-body problems
in Special Relativity. Let us then turn to a basic dynamical problem in
Special Relativity and begin by discussing the very few concepts which will
be required for the development. Incidentally, Special Relativity does not
allow N-body problems for N > 1 because simultaneity is not a property
of this branch of physics.

In Special Relativity one takes into account the time required for light
to travel from a phenomenon being observed to the eye of the observer.
Consider, then, two reference frames: a lab frame with Euclidean coordi-
nates X,Y,Z and a rocket frame with Euclidean coordinates X', Y’ Z’,
which coincide initially. In the frames one positions observers O and O’ at
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Figure 1.3. Lab and Rocket frames.

their respective origins. At some initial time the observers have synchro-
nized clocks. Assume the rocket frame is in motion in the X direction with
speed u relative to the lab frame. (See Figure 1.3) Assume that |u| is less
than the speed of light.

An event E, like an exploding star, is observed by both O and O'.
O records E as happening at (z,y,z) at time ¢, while O’ records E as
happening at (z’,y’,2’) at time #’. Taking into account the time for light
to travel to the eyes of the observers, these variables are related by the
Lorentz transformation (Bergmann (1976)):

/o c(x - Ut) /I _ /I
T ma Y=4 2=3
1.9
,_ (Pt—uzx) (1:4)
b= 7c(c2—u2)1/2’ lu| < e,
or, equivalently,
c(z’ + ut’) , ,
(1.10)

(2t + uz')

s c(c® — u2)1/2’

lul <e,

in which c is the speed of light.
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For covariance relative to the Lorentz transformation, Einstein showed
that for the motion of a particle P of rest mass myg,

Ccmy

(2 — v2)1/2° lv] <e, (lab) (1.11)

d
F = E(mv), m=

maps under the Lorentz transformation into

d cmg
F = @(m’v'), m = @ )i [v'| < e, (rocket)  (1.12)
that is, the laws of motion are the same in both the lab frame and the
rocket frame. For future use and because of its basic importance, let us
actually prove this result.

We first define the continuum concepts of velocity and acceleration. In

the lab frame, set

dx dv
v=— = lv| < ¢, (1.13)
while in the rocket frame set
, d’ , dv

v = W, a = E?, |’U’| < c. (114)

To relate v and v’, we have from (1.9)

L dr’ _ *(dz — udt)

we T e R AT T T 1.
dt’ c2dt — udzx (1.15)
so that
2
r_ 4 (’U B u)
B = (1.16)
Equivalently, from (1.10), one finds
AW +u)
Similarly, the relationship between a and o’ is found to be
3(.2 _ ,2)\3/2
/= M (1.18)

a’
(¢ —uv)3
or, equivalently,

c3(02 - u2)3/2
a = W(I,. (119)
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We are now ready to prove the Einstein result which is formulated in the
following theorem.

Theorem 1.1. Let a particle P be in motion along the X azis in the lab
and along the X' axis in the rocket. In the lab frame let the mass m of P
be given by

Ccmyo

M= @ — )2’

lv| < ¢, (1.20)

where myg is a positive constant called the rest mass of P and v is the speed
of P in the lab. In the rocket frame let the mass m’ of P be given by

cmyo
muwgtzﬁmﬁ,1w<q (1.21)

where mg is the same constant as in (1.20) and v’ is the speed of P in the
rocket. Let a force F' be applied to P in the lab. In rocket coordinates denote
the force by F’, so that
F=F.
Then, if in the lab the equation of motion is given by
F= i(mv) (1.22)
St ’ '
it follows that in the rocket the equation of motion of P is
F’ d

= —(m'v). (1.23)

Proof. From (1.22) and (1.20)

dm dv
F = ’UE + mg
v2ma
= 2 — P + ma
so that
o2
F = (m) ma. (1.24)

From (1.15) and (1.13), then, we must have

F:<§§%W)m¢ (1.25)
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Since F' = F’, the proof will follow if

<CTC_27) ma = (.0%2),)2) m'a. (1.26)

However, substitution of (1.16), (1.18) and (1.21) into the right side of
(1.26) yields, quite remarkably, that the identity is valid and the theorem
is proved. O

1.3. Relativistic Oscillation

Let us consider now a particle P which oscillates on the X axis in the lab
frame. Assume that the force F' on P is one whose magnitude depends only
on the x coordinate of P. Then, let

F = f(x). (1.27)

Assume that initially, that is, at time ¢t = 0, P is at o and has speed vy.
Then the equation of motion for P in the lab frame is

£ (mv) = f(z), (1.28)
or,
2
(CQC_—UQ) ma = f(z), (1.29)
or,
Emi = f(x) (2 — 2?). (1.30)

In turn, the latter equation reduces to

c*moi = f(x)(c® - &%)*?,

so that, finally, we find
. f(®@) 2 Lo

is the differential equation one has to solve in the lab frame, given the initial
conditions

II)(O) =X, x(O) = 9. (132)
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In general, (1.31) cannot be solved in closed form, so that the observer
in the lab must now introduce a computer to approximate the solution.
However, the observer in the rocket frame also observes the motion of P,
but in his coordinate system. His equation and initial conditions are found
by applying (1.10), (1.17) and (1.19) to (1.31) and (1.32). Thus, he too will
be confronted with a problem which requires a computer and so a computer
identical to that in the lab is now introduced into the rocket.

The fundamental problem which now arises is: How should the computa-
tions be done in the lab and rocket so that the physics of Special Relativity
is preserved, that is, so that the numerical results will be related by the
Lorentz transformation. We show now how this can be done.

1.4. Numerical Methodology

For At > 0, let t, = kAt,k =0,1,2,3.... Let t}, correspond to t; by the
Lorentz transformation. At tj let P be at (zk,yk,2x) in the lab and at
(@} Yk, 21,) in the rocket. These are also related by the Lorentz transforma-

tion. Define
Azy  Tpyy — Tk Avg  Ugg1 — Uk
Vg = = y, Q= = , LAB 1.33
Aty teyr —t Aty tryr —t ( ) (1:33)
Az), _ $;c+1 — I, Avy, _ U§c+1 — v
Aty thyr — th Aty thir — U

a = (ROCKET) (1.34)

v =

Then corresponding to (1.16)—(1.19), one has by direct substitution that

2 2/, 1
y (v —u) Ay +u)
kT gy T c? + uvj, (1:35)

63(62 _ u2)3/2
a
(2 — uvg)2(c® — uvgs1)
A(c2 — u?)3/2

al..
(e + uvy,)?(c + uvy, ) k

ap, =
(1.36)

arp =

In the limit (1.33)—(1.36) converge to (1.13), (1.14) and (1.16)—(1.19). Our
problem now is to choose an approximation for

P %(mv) (1.37)

in the lab which will transform covariantly into the rocket. The clue for
such a choice comes from (1.24) which is equivalent to (1.22). What we



