

双语教材

微积分

(第六版)

Calculus (6th Edition)

詹姆斯·斯图尔特 (James Stewart) 著

张乃岳 编译

黄志勇 审

X+7-1= El

N=1/3B-YI

双语教材

微积分

(第六版)

Caculus (6th Edition)

詹姆斯·斯图尔特 (James Stewart)

张乃岳 编译

黄志勇 审

中国人民大学出版社

图书在版编目 (CIP) 数据

微积分(第六版)/斯图尔特著,张乃岳编译. 北京:中国人民大学出版社,2009 双语教材 ISBN 978-7-300-10853-7

- I. 微…
- Ⅱ. ①斯…②张…
- Ⅲ. 微积分-双语教学-教材
- IV. O172

中国版本图书馆 CIP 数据核字 (2009) 第 097154 号

双语教材

微积分 (第六版)

Calculus (6th Edition)

詹姆斯·斯图尔特 (James Stewart) 著

张乃岳 编译

黄志勇 审

出版发行 中国人民大学出版社

社 址 北京中关村大街 31 号 邮政编码 100080

电 话 010-62511242 (总编室) 010-62511398 (质管部)

010-82501766 (邮购部) 010-62514148 (门市部)

010-62515195 (发行公司) 010-62515275 (盗版举报)

呦 址 http://www.crup.com.en

http://www.ttrnet.com(人大教研网)

经 销 新华书店

印 刷 北京山润国际印务有限公司

规 格 215 mm×275 mm 16 开本 版 次 2009 年 6 月第 1 版

印 张 37.5 插页 1 印 次 2009 年 6 月第 1 次印刷

字 数 857 000 定 价 58.00 元

编译者前言

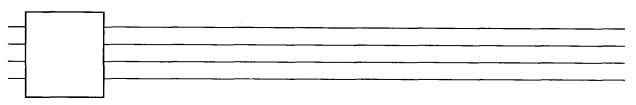
由詹姆斯·斯图尔特编写的《微积分》(Calculus)是一本在欧美高校中备受欢迎的微积分教材,本版是它的第六版,它采用了由浅入深的方式,向读者介绍了微积分的相关概念和分析解决问题的方法。

本书是在詹姆斯·斯图尔特编写的这本《微积分》(Calculus)的基础上删改而成的。我们在删改时充分考虑了中国高校教学和中国学生需求的特点与学校教学的课时要求,其中删改的内容主要包括:定积分的更多应用(further applications of integration),参数方程和极坐标(parametric equations and polar coordinates),向量空间和几何空间(vectors and the geometry of space),向量函数(vector functions),向量微积分(vector calculus)的大部分内容以及二阶微分方程(second-order differential equations)。此外,我们根据中国的实际情况,对原书中的一些应用性习题和实验性习题也进行了删减。

经过删减后,本书基本保留了原书的逻辑体系,最后成书包括十二章以及学习微积分所需的初等数学知识介绍。每一章的内容包含知识讲解、例题解析以及练习题三部分,书后附录中附有练习题的答案。此外,为了便于读者更好地理解数学中的一些英文关键术语的中文含义,我们在每一章的章末增加了关键术语的中英文对照表,读者在学习过程中可以参考。

本书可以作为中国高等院校微积分课程的双语教材和教师参考书,也可作为国际培训班中所有需要微积分教学的专业的数学教材,使用本书进行教学不仅可以使学生们掌握微积分的概念和计算 技巧,也可以使学生提高自己的外语水平和能力。

> 编译者 张乃岳 北京大学



PREFACE

This *Metric International Version* differs from the regular version of *Calculus*, Sixth Edition, in several ways:

The units used in almost all of the examples and exercises have been changed from US Customary units to metric units. There are a small number of exceptions: In some engineering applications it may be useful for some engineers to be familiar with US units. And I wanted to retain a few exercises (for example, those involving baseball) where it would be inappropriate to use metric units.

I've changed the examples and exercises involving real-world data to be more international in nature, so that the vast majority of them now come from countries other than the United States. For example, there are now exercises and examples concerning Hong Kong postal rates; Canadian public debt; unemployment rates in Australia; hours of daylight in Ankara, Turkey; isothermals in China; percentage of the population in rural Argentina; populations of Malaysia, Indonesia, Mexico, and India; and power consumption in Ontario, among many others.

In addition to changing exercises so that the units are metric and the data have a more international flavor, a number of other exercises have been changed as well, the result being that about 10% of the exercises are different from those in the regular version.

PHILOSOPHY OF THE BOOK

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to write a book that assists students in discovering calculus—both for its practical power and its surprising beauty. In this edition, as in the first five editions, I aim to convey to the student a sense of the utility of calculus and develop technical competence, but I also strive to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly experienced a sense of triumph when he made his great discoveries. I want students to share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that this should be the primary goal of calculus instruction. In fact, the impetus for the current calculus reform movement came from the Tulane Conference in 1986, which formulated as their first recommendation:

Focus on conceptual understanding.

I have tried to implement this goal through the *Rule of Three*: "Topics should be presented geometrically, numerically, and algebraically." Visualization, numerical and graphical experimentation, and other approaches have changed how we teach conceptual reasoning in fundamental ways. More recently, the Rule of Three has been expanded to become the *Rule of Four* by emphasizing the verbal, or descriptive, point of view as well.

In writing the sixth edition my premise has been that it is possible to achieve conceptual understanding and still retain the best traditions of traditional calculus. The book contains elements of reform, but within the context of a traditional curriculum.

ì

此为试读,需要完整PDF请访问: www.ertongbook.com

ALTERNATIVE VERSIONS

I have written several other calculus textbooks that might be preferable for some instructors. Most of them also come in single variable and multivariable versions.

- Metric International Version Calculus, Early Transcendentals, Sixth Edition, is similar
 to the present textbook except that the exponential, logarithmic, and inverse trigonometric functions are covered in the first semester.
- International Student Edition Essential Calculus is a much briefer book (800 pages), though it contains almost all of the topics in the present text. The relative brevity is achieved through briefer exposition of some topics and putting some features on the website.
- Metric International Version Calculus: Concepts and Contexts, Third Edition, emphasizes conceptual understanding even more strongly than this book. The coverage of topics is not encyclopedic and the material on transcendental functions and on parametric equations is woven throughout the book instead of being treated in separate chapters.
- Calculus: Early Vectors introduces vectors and vector functions in the first semester and
 integrates them throughout the book. It is suitable for students taking Engineering and
 Physics courses concurrently with calculus.

CONTENT

Diagnostic Tests

The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Functions, and Trigonometry.

A Preview of Calculus

This is an overview of the subject and includes a list of questions to motivate the study of calculus.

I = Functions and Models

From the beginning, multiple representations of functions are stressed: verbal, numerical, visual, and algebraic. A discussion of mathematical models leads to a review of the standard functions, including exponential and logarithmic functions, from these four points of view.

2 = Limits

The material on limits is motivated by a prior discussion of the tangent and velocity problems. Limits are treated from descriptive, graphical, numerical, and algebraic points of view.

3 - Derivatives

The material on derivatives is covered in two sections in order to give students more time to get used to the idea of a derivative as a function. The examples and exercises explore the meanings of derivatives in various contexts. Higher derivatives are now introduced in Section 3.2.

4 = Applications of Differentiation

The basic facts concerning extreme values and shapes of curves are deduced from the Mean Value Theorem. Graphing with technology emphasizes the interaction between calculus and calculators and the analysis of families of curves.

5 Integrals

The area problem and the distance problem serve to motivate the definite integral, with sigma notation introduced as needed. Emphasis is placed on explaining the meanings of integrals in various contexts and on estimating their values from graphs and tables.

6 ■ Applications of Integration

Here I present the applications of integration—area, volume, work, average value—that can reasonably be done without specialized techniques of integration. General methods are

emphasized. The goal is for students to be able to divide a quantity into small pieces, estimate with Riemann sums, and recognize the limit as an integral.

7 ■ Inverse Functions

This chapter discusses Inverse functions.

8 ■ Techniques of Integration

All the standard methods are covered but, of course, the real challenge is to be able to recognize which technique is best used in a given situation. Accordingly, in Section 8.5, I present a strategy for integration.

9 ■ Differential Equations

Modeling is the theme that unifies this introductory treatment of differential equations.

10 ■ Infinite Sequences and Series

The convergence tests have intuitive justifications as well as formal proofs. Numerical estimates of sums of series are based on which test was used to prove convergence.

11 - Partial Derivatives

Functions of two or more variables are studied from verbal, numerical, visual, and algebraic points of view. In particular, I introduce partial derivatives by looking at a specific column in a table of values of the heat index (perceived air temperature) as a function of the actual temperature and the relative humidity. Directional derivatives are estimated from contour maps of temperature, pressure, and snowfall.

12 • Multiple Integrals

Contour maps and the Midpoint Rule are used to estimate the average snowfall and average temperature in given regions. Double and triple integrals are used to compute probabilities, surface areas, and (in projects) volumes of hyperspheres and volumes of intersections of three cylinders. Cylindrical and spherical coordinates are introduced in the context of evaluating triple integrals.

AN

ANCILLARIES

Metric International Version Calculus, Sixth Edition, is supported by a complete set of ancillaries developed under my direction. Each piece has been designed to enhance student understanding and to facilitate creative instruction. The tables on pages xxi-xxii describe each of these ancillaries.

ACKNOWLEDGMENTS

The preparation of this and previous editions has involved much time spent reading the reasoned (but sometimes contradictory) advice from a large number of astute reviewers. I greatly appreciate the time they spent to understand my motivation for the approach taken. I have learned something from each of them.

SIXTH EDITION REVIEWERS

Marilyn Belkin, Villanova University
Philip L. Bowers, Florida State University
Amy Elizabeth Bowman, University of Alabama in Huntsville
M. Hilary Davies, University of Alaska Anchorage
Frederick Gass, Miami University
Paul Triantafilos Hadavas, Armstrong Atlantic State University

Nets Katz, Indiana University Bloomington
James McKinney, California State Polytechnic University,
Pomona

Martin Nakashima, California State Polytechnic University, Pomona

Lila Roberts, Georgia College and State University

TECHNOLOGY REVIEWERS

Maria Andersen, Muskegon Community College

Eric Aurand, Eastfield College

4 |||| PREFACE

Joy Becker, University of Wisconsin-Stout Przemyslaw Bogacki, Old Dominion University Amy Elizabeth Bowman, University of Alabama in Huntsville Monica Brown, University of Missouri-St. Louis Roxanne Byrne, University of Colorado at Denver and Health Sciences Center Teri Christiansen, University of Missouri-Columbia Bobby Dale Daniel, Lamar University Jennifer Daniel, Lamar University Andras Domokos, California State University, Sacramento Timothy Flaherty, Carnegie Mellon University Lee Gibson, University of Louisville Jane Golden, Hillsborough Community College Semion Gutman, University of Oklahoma Diane Hoffoss, University of San Diego Lorraine Hughes, Mississippi State University Jay Jahangiri, Kent State University John Jernigan, Community College of Philadelphia Brian Karasek, South Mountain Community College

Jason Kozinski, University of Florida Carole Krueger, The University of Texas at Arlington Ken Kubota, University of Kentucky John Mitchell, Clark College Donald Paul, Tulsa Community College Chad Pierson, University of Minnesota, Duluth Lanita Presson, University of Alabama in Huntsville Karin Reinhold, State University of New York at Albany Thomas Riedel, University of Louisville Christopher Schroeder, Morehead State University Angela Sharp, University of Minnesota, Duluth Patricia Shaw, Mississippi State University Carl Spitznagel, John Carroll University Mohammad Tabanjeh, Virginia State University Capt. Koichi Takagi, United States Naval Academy Lorna TenEyck, Chemeketa Community College Roger Werbylo, Pima Community College David Williams, Clayton State University Zhuan Ye, Northern Illinois University

PREVIOUS EDITION REVIEWERS

B. D. Aggarwala, University of Calgary John Alberghini, Manchester Community College Michael Albert, Carnegie-Mellon University Daniel Anderson, University of Iowa Donna J. Bailey, Northeast Missouri State University Wayne Barber, Chemeketa Community College Neil Berger, University of Illinois, Chicago David Berman, University of New Orleans Richard Biggs, University of Western Ontario Robert Blumenthal, Oglethorpe University Martina Bode, Northwestern University Barbara Bohannon, Hofstra University Philip L. Bowers, Florida State University Jay Bourland, Colorado State University Stephen W. Brady, Wichita State University Michael Breen, Tennessee Technological University Robert N. Bryan, University of Western Ontario David Buchthal, University of Akron Jorge Cassio, Miami-Dade Community College Jack Ceder, University of California, Santa Barbara Scott Chapman, Trinity University James Choike, Oklahoma State University Barbara Cortzen, DePaul University Carl Cowen, Purdue University Philip S. Crooke, Vanderbilt University Charles N. Curtis, Missouri Southern State College Daniel Cyphert, Armstrong State College Robert Dahlin Gregory J. Davis, University of Wisconsin-Green Bay Elias Deeba, University of Houston-Downtown Daniel DiMaria, Suffolk Community College Seymour Ditor, University of Western Ontario Greg Dresden, Washington and Lee University Daniel Drucker, Wayne State University Kenn Dunn, Dalhousie University Dennis Dunninger, Michigan State University Bruce Edwards, University of Florida David Ellis, San Francisco State University John Ellison, Grove City College Martin Erickson, Truman State University Garret Etgen, University of Houston Theodore G. Faticoni, Fordham University Laurene V. Fausett, Georgia Southern University Norman Feldman, Sonoma State University Newman Fisher, San Francisco State University José D. Flores, The University of South Dakota William Francis, Michigan Technological University James T. Franklin, Valencia Community College, East Stanley Friedlander, Bronx Community College Patrick Gallagher, Columbia University-New York Paul Garrett, University of Minnesota-Minneapolis Frederick Gass, Miami University of Ohio Bruce Gilligan, University of Regina Matthias K. Gobbert, University of Maryland, Baltimore County Gerald Goff, Oklahoma State University Stuart Goldenberg, California Polytechnic State University John A. Graham, Buckingham Browne & Nichols School

Richard Grassl, University of New Mexico Michael Gregory, University of North Dakota Charles Groetsch, University of Cincinnati Salim M. Haïdar, Grand Valley State University D. W. Hall, Michigan State University Robert L. Hall, University of Wisconsin-Milwaukee Howard B. Hamilton, California State University, Sacramento Darel Hardy, Colorado State University Gary W. Harrison, College of Charleston Melvin Hausner, New York University/Courant Institute Curtis Herink, Mercer University Russell Herman, University of North Carolina at Wilmington Allen Hesse, Rochester Community College Randall R. Holmes, Auburn University James F. Hurley, University of Connecticut Matthew A. Isom, Arizona State University Gerald Janusz, University of Illinois at Urbana-Champaign John H. Jenkins, Embry-Riddle Aeronautical University, Prescott Campus Clement Jeske, University of Wisconsin, Platteville Carl Jockusch, University of Illinois at Urbana-Champaign Jan E. H. Johansson, University of Vermont Jerry Johnson, Oklahoma State University Zsuzsanna M. Kadas, St. Michael's College Matt Kaufman Matthias Kawski, Arizona State University Frederick W. Keene, Pasadena City College Robert L. Kelley, University of Miami

Kevin Kreider, University of Akron
Leonard Krop, DePaul University
Mark Krusemeyer, Carleton College
John C. Lawlor, University of Vermont
Christopher C. Leary, State University of New York
at Geneseo
David Leeming, University of Victoria

Virgil Kowalik, Texas A&I University

Sam Lesseig, Northeast Missouri State University
Phil Locke, University of Maine
Joan McCarter, Arizona State University
Phil McCartney, Northern Kentucky University
Igor Malyshev, San Jose State University
Larry Mansfield, Queens College
Mary Martin, Colgate University
Nathaniel F. G. Martin, University of Virginia
Gerald Y. Matsumoto, American River College
Tom Metzger, University of Pittsburgh
Michael Montaño, Riverside Community College

Teri Jo Murphy, University of Oklahoma Richard Nowakowski, Dalhousie University Hussain S. Nur, California State University, Fresno Wayne N. Palmer, Utica College Vincent Panico, University of the Pacific F. J. Papp, University of Michigan-Dearborn Mike Penna, Indiana University-Purdue University *Indianapolis* Mark Pinsky, Northwestern University Lothar Redlin, The Pennsylvania State University Joel W. Robbin, University of Wisconsin-Madison E. Arthur Robinson, Jr., The George Washington University Richard Rockwell, Pacific Union College Rob Root, Lafayette College Richard Ruedemann, Arizona State University David Ryeburn, Simon Fraser University Richard St. Andre, Central Michigan University Ricardo Salinas, San Antonio College Robert Schmidt, South Dakota State University Eric Schreiner, Western Michigan University Mihr J. Shah, Kent State University-Trumbull Theodore Shifrin, University of Georgia Wayne Skrapek, University of Saskatchewan Larry Small, Los Angeles Pierce College Teresa Morgan Smith, Blinn College William Smith, University of North Carolina Donald W. Solomon, University of Wisconsin-Milwaukee Edward Spitznagel, Washington University Joseph Stampfli, Indiana University Kristin Stoley, Blinn College M. B. Tavakoli, Chaffey College Paul Xavier Uhlig, St. Mary's University, San Antonio Stan Ver Nooy, University of Oregon Andrei Verona, California State University-Los Angeles Russell C. Walker, Carnegie Mellon University

William L. Walton, McCallie School
Jack Weiner, University of Guelph
Alan Weinstein, University of California, Berkeley
Theodore W. Wilcox, Rochester Institute of Technology
Steven Willard, University of Alberta
Robert Wilson, University of Wisconsin-Madison
Jerome Wolbert, University of Michigan-Ann Arbor
Dennis H. Wortman, University of Massachusetts, Boston
Mary Wright, Southern Illinois University-Carbondale
Paul M. Wright, Austin Community College
Xian Wu, University of South Carolina

In addition, I would like to thank George Bergman, David Cusick, Stuart Goldenberg, Larry Peterson, Dan Silver, Norton Starr, Alan Weinstein, and Gail Wolkowicz for their suggestions; Dan Clegg for his research in libraries and on the Internet; Al Shenk and Den-

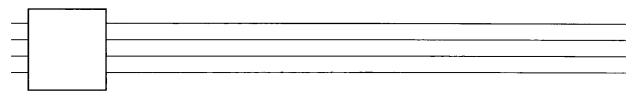
nis Zill for permission to use exercises from their calculus texts; John Ringland for his refinements of the multivariable Maple art; COMAP for permission to use project material; George Bergman, David Bleecker, Dan Clegg, Victor Kaftal, Anthony Lam, Jamie Lawson, Ira Rosenholtz, Paul Sally, Lowell Smylie, and Larry Wallen for ideas for exercises; Dan Drucker for the roller derby project; Thomas Banchoff, Tom Farmer, Fred Gass, John Ramsay, Larry Riddle, and Philip Straffin for ideas for projects; Dan Anderson, Dan Clegg, Jeff Cole, Dan Drucker, and Barbara Frank for solving the new exercises and suggesting ways to improve them; Marv Riedesel and Mary Johnson for accuracy in proof-reading; and Jeff Cole and Dan Clegg for their careful preparation and proofreading of the answer manuscript.

In addition, I thank those who have contributed to past editions: Ed Barbeau, Fred Brauer, Andy Bulman-Fleming, Bob Burton, Tom DiCiccio, Garret Etgen, Chris Fisher, Arnold Good, Gene Hecht, Harvey Keynes, Kevin Kreider, E. L. Koh, Zdislav Kovarik, Emile LeBlanc, David Leep, Gerald Leibowitz, Lothar Redlin, Carl Riehm, Peter Rosenthal, Doug Shaw, and Saleem Watson.

I also thank Kathi Townes, Stephanie Kuhns, and Brian Betsill of TECHarts for their production services and the following Brooks/Cole staff: Cheryll Linthicum, editorial production project manager; Mark Santee, Elizabeth Wong, and Darlene Amidon-Brent, marketing team; Stacy Green, assistant editor, and Cynthia Ashton, editorial assistant; Sam Subity, technology project manager; Rob Hugel, creative director, and Vernon Boes, art director; and Becky Cross, print buyer. They have all done an outstanding job.

I have been very fortunate to have worked with some of the best mathematics editors in the business over the past two decades: Ron Munro, Harry Campbell, Craig Barth, Jeremy Hayhurst, Gary Ostedt, Bob Pirtle, and Chris Hall. Special thanks go to all of them.

JAMES STEWART



TO THE STUDENT

Reading a calculus textbook is different from reading a news-paper or a novel, or even a physics book. Don't be discouraged if you have to read a passage more than once in order to understand it. You should have pencil and paper and calculator at hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems and read the text only if they get stuck on an exercise. I suggest that a far better plan is to read and understand a section of the text before attempting the exercises. In particular, you should look at the definitions to see the exact meanings of the terms. And before you read each example, I suggest that you cover up the solution and try solving the problem yourself. You'll get a lot more from looking at the solution if you do so.

Part of the aim of this course is to train you to think logically. Learn to write the solutions of the exercises in a connected, step-by-step fashion with explanatory sentences—not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the back of the book, in Appendix I. Some exercises ask for a verbal explanation or interpretation or description. In such cases there is no single correct way of expressing the answer, so don't worry that you haven't found the definitive answer. In addition, there are often several different forms in which to express a numerical or algebraic answer, so if your answer differs from mine, don't immediately assume you're wrong. For example, if the answer given in the back of the book is $\sqrt{2}-1$ and you obtain $1/(1+\sqrt{2})$, then you're right and rationalizing the denominator will show that the answers are equivalent.

Mathematica, or the TI-89/92) are required.

You will also encounter the symbol , which warns you against committing an error. I have placed this symbol in the margin in situations where I have observed that a large proportion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to this text, is referred to by means of the symbol TEC and can be accessed from www.stewartcalculus.com. It directs you to modules in which you can explore aspects of calculus for which the computer is particularly useful. TEC also provides Homework Hints for representative exercises that are indicated by printing the exercise number in red: 15. These homework hints ask you questions that allow you to make progress toward a solution without actually giving you the answer. You need to pursue each hint in an active manner with pencil and paper to work out the details. If a particular hint doesn't enable you to solve the problem, you can click to reveal the next hint.

An optional CD-ROM that your instructor may have asked you to purchase is the *Interactive Video Skillbuilder*, which contains videos of instructors explaining two or three of the examples in every section of the text.

I recommend that you keep this book for reference purposes after you finish the course. Because you will likely forget some of the specific details of calculus, the book will serve as a useful reminder when you need to use calculus in subsequent courses. And, because this book contains more material than can be covered in any one course, it can also serve as a valuable resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one of the greatest achievements of the human intellect. I hope you will discover that it is not only useful but also intrinsically beautiful.

JAMES STEWART

DIAGNOSTIC TESTS

Success in calculus depends to a large extent on knowledge of the mathematics that precedes calculus: algebra, analytic geometry, functions, and trigonometry. The following tests are intended to diagnose weaknesses that you might have in these areas. After taking each test you can check your answers against the given answers and, if necessary, refresh your skills by referring to the review materials that are provided.

DIAGNOSTIC TEST: ALGEBRA

1. Evaluate each expression without using a calculator.

(a)
$$(-3)^4$$

(b)
$$-3^4$$

(c)
$$3^{-4}$$

(d)
$$\frac{5^{23}}{5^{21}}$$

(e)
$$\left(\frac{2}{3}\right)^{-2}$$
 (f) $16^{-3/4}$

(f)
$$16^{-3/4}$$

2. Simplify each expression. Write your answer without negative exponents.

(a)
$$\sqrt{200} - \sqrt{32}$$

(b)
$$(3a^3b^3)(4ab^2)^2$$

(c)
$$\left(\frac{3x^{3/2}y^3}{x^2y^{-1/2}}\right)^{-2}$$

3. Expand and simplify.

(a)
$$3(x+6) + 4(2x-5)$$
 (b) $(x+3)(4x-5)$

(b)
$$(x + 3)(4x - 5)$$

(c)
$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$$
 (d) $(2x + 3)^2$

(d)
$$(2x + 3)$$

(e)
$$(x+2)^3$$

4. Factor each expression.

(a)
$$4x^2 - 25$$

(b)
$$2x^2 + 5x - 12$$

(c)
$$x^3 - 3x^2 - 4x + 12$$

(d)
$$x^4 + 27x$$

(e)
$$3x^{3/2} - 9x^{1/2} + 6x^{-1/2}$$

(f)
$$x^3y - 4xy$$

5. Simplify the rational expression.

(a)
$$\frac{x^2 + 3x + 2}{x^2 - x - 2}$$

(b)
$$\frac{2x^2-x-1}{x^2-9} \cdot \frac{x+3}{2x+1}$$

(c)
$$\frac{x^2}{x^2-4} - \frac{x+1}{x+2}$$

$$(d) \frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}}$$

6. Rationalize the expression and simplify.

(a)
$$\frac{\sqrt{10}}{\sqrt{5}-2}$$

$$(b) \frac{\sqrt{4+h}-2}{h}$$

7. Rewrite by completing the square.

(a)
$$x^2 + x + 1$$

(b)
$$2x^2 - 12x + 11$$

8. Solve the equation. (Find only the real solutions.)

(a)
$$x + 5 = 14 - \frac{1}{2}x$$

(b)
$$\frac{2x}{x+1} = \frac{2x-1}{x}$$

(c)
$$x^2 - x - 12 = 0$$

(d)
$$2x^2 + 4x + 1 = 0$$

(e)
$$x^4 - 3x^2 + 2 = 0$$

(f)
$$3|x-4|=10$$

(g)
$$2x(4-x)^{-1/2} - 3\sqrt{4-x} = 0$$

9. Solve each inequality. Write your answer using interval notation.

(a)
$$-4 < 5 - 3x \le 17$$

(b)
$$x^2 < 2x + 8$$

(c)
$$x(x-1)(x+2) > 0$$

(d)
$$|x-4| < 3$$

$$(e) \ \frac{2x-3}{x+1} \le 1$$

10. State whether each equation is true or false.

(a)
$$(p+q)^2 = p^2 + q^2$$

(b)
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

(c)
$$\sqrt{a^2 + b^2} = a + b$$

$$(d) \frac{1+TC}{C} = 1+T$$

(e)
$$\frac{1}{x-y} = \frac{1}{x} - \frac{1}{y}$$

$$(f) \frac{1/x}{a/x - b/x} = \frac{1}{a - b}$$

ANSWERS TO DIAGNOSTIC TEST A: ALGEBRA

(b)
$$-81$$

6. (a)
$$5\sqrt{2} + 2\sqrt{10}$$

(b)
$$\frac{1}{\sqrt{4+h}+2}$$

(d) 25 **2.** (a)
$$6\sqrt{2}$$

(e)
$$\frac{9}{4}$$

$$(f) \, \tfrac{1}{8}$$

(b)
$$48a^5b^7$$
 (c) $\frac{3}{9}$

7. (a)
$$(x + \frac{1}{2})^2 + \frac{3}{4}$$

(b)
$$2(x-3)^2-7$$

3. (a)
$$11x - 2$$

(b)
$$4x^2 + 7x - 15$$

(c)
$$a-b$$

(d)
$$4x^2 + 12x + 9$$

(e)
$$x^3 + 6x^2 + 12x + 8$$

(d)
$$4r^2 + 12r +$$

4. (a)
$$(2x-5)(2x+5)$$

(b)
$$(2r-3)(r+4)$$

(c)
$$(x-3)(x-2)(x+2)$$

(e) $3x^{-1/2}(x-1)(x-2)$

(b)
$$(2x-3)(x+4)$$

(d) $x(x+3)(x^2-3x+9)$

(f)
$$xy(x-2)(x+2)$$

9. (a)
$$[-4, 3)$$

(b)
$$(-2, 4)$$

(f)
$$xy(x = 2)(x + 2)$$

(c)
$$(-2,0) \cup (1,\infty)$$

8. (a) 6 (b) 1 (d) $-1 \pm \frac{1}{2}\sqrt{2}$ (e) $\pm 1, \pm \sqrt{2}$

(e)
$$(-1, 4]$$

5. (a)
$$\frac{x+2}{x-2}$$

$$(b) \ \frac{x-1}{x-3}$$

(c)
$$\frac{1}{r-2}$$

(d)
$$-(x + y)$$

В

DIAGNOSTIC TEST: ANALYTIC GEOMETRY

- 1. Find an equation for the line that passes through the point (2, -5) and
 - (a) has slope -3
 - (b) is parallel to the x-axis
 - (c) is parallel to the y-axis
 - (d) is parallel to the line 2x 4y = 3
- 2. Find an equation for the circle that has center (-1, 4) and passes through the point (3, -2).
- 3. Find the center and radius of the circle with equation $x^2 + y^2 6x + 10y + 9 = 0$.
- **4.** Let A(-7, 4) and B(5, -12) be points in the plane.
 - (a) Find the slope of the line that contains A and B.
 - (b) Find an equation of the line that passes through A and B. What are the intercepts?
 - (c) Find the midpoint of the segment AB.
 - (d) Find the length of the segment AB.
 - (e) Find an equation of the perpendicular bisector of AB.
 - (f) Find an equation of the circle for which AB is a diameter.
- 5. Sketch the region in the xy-plane defined by the equation or inequalities.

(a)
$$-1 \le y \le 3$$

(b)
$$|x| < 4$$
 and $|y| < 2$

(c)
$$y < 1 - \frac{1}{2}x$$

(d)
$$y \ge x^2 - 1$$

(e)
$$x^2 + y^2 < 4$$

(f)
$$9x^2 + 16y^2 = 144$$

ANSWERS TO DIAGNOSTIC TEST B: ANALYTIC GEOMETRY

(b)
$$y = -5$$

(c)
$$x = 2$$

(d)
$$y = \frac{1}{2}x - 6$$

2.
$$(x + 1)^2 + (y - 4)^2 = 52$$

- 3. Center (3, -5), radius 5
- 4. (a) $-\frac{4}{3}$

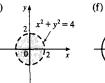
(b)
$$4x + 3y + 16 = 0$$
; x-intercept -4 , y-intercept $-\frac{16}{3}$

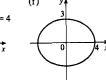
- (c) (-1, -4)
- (d) 20

(e)
$$3x - 4y = 13$$

(f)
$$(x + 1)^2 + (y + 4)^2 = 100$$

(b)





DIAGNOSTIC TEST: FUNCTIONS

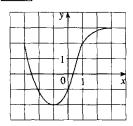


FIGURE FOR PROBLEM I

- 1. The graph of a function f is given at the left.
 - (a) State the value of f(-1).
 - (b) Estimate the value of f(2).
 - (c) For what values of x is f(x) = 2?
 - (d) Estimate the values of x such that f(x) = 0.
 - (e) State the domain and range of f.
- 2. If $f(x) = x^3$, evaluate the difference quotient $\frac{f(2+h) f(2)}{h}$ and simplify your answer.
- 3. Find the domain of the function.

(a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$

(b)
$$g(x) = \frac{\sqrt[3]{x}}{x^2 + 1}$$

- (a) $f(x) = \frac{2x+1}{x^2+x-2}$ (b) $g(x) = \frac{\sqrt[3]{x}}{x^2+1}$ (c) $h(x) = \sqrt{4-x} + \sqrt{x^2-1}$
- **4.** How are graphs of the functions obtained from the graph of f?

(a)
$$y = -f(x)$$

(b)
$$y = 2f(x) - 1$$

(c)
$$y = f(x - 3) + 2$$

5. Without using a calculator, make a rough sketch of the graph.

(a)
$$y = x^3$$

(b)
$$y = (x + 1)^3$$

(c)
$$y = (x - 2)^3 + 3$$

(f) $y = 2\sqrt{x}$

(d)
$$y = 4 - x^2$$

(e)
$$y = \sqrt{x}$$

(f)
$$y = 2\sqrt{x}$$

$$(g) y = -2^x$$

(e)
$$y = \sqrt{x}$$

(h) $y = 1 + x^{-1}$

6. Let
$$f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 0 \\ 2x + 1 & \text{if } x > 0 \end{cases}$$

- (a) Evaluate f(-2) and f(1). (b) Sketch the graph of f. 7. If $f(x) = x^2 + 2x - 1$ and g(x) = 2x - 3, find each of the following functions.
 - (a) $f \circ g$
- (b) $g \circ f$

(d)

(g)

(c) $g \circ g \circ g$

(e)

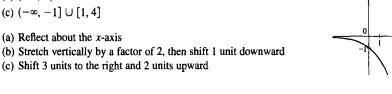
ANSWERS TO DIAGNOSTIC TEST C: FUNCTIONS

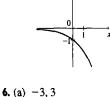
(c)
$$-3, 1$$

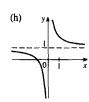
(d)
$$-2.5, 0.3$$

(e)
$$[-3, 3], [-2, 3]$$

- **3.** (a) $(-\infty, -2) \cup (-2, 1) \cup (1, \infty)$
 - (b) $(-\infty, \infty)$
 - (c) $(-\infty, -1] \cup [1, 4]$
- 4. (a) Reflect about the x-axis







- 7. (a) $(f \circ g)(x) = 4x^2 8x + 2$
 - (b) $(g \circ f)(x) = 2x^2 + 4x 5$
 - (c) $(a \circ a \circ a)(x) = 8x 21$

If you have had difficulty with these problems, you should look at Sections 1.1-1.2 of this book.

D

DIAGNOSTIC TEST: TRIGONOMETRY

- I. Convert from degrees to radians.
 - (a) 300°
- (b) -18°
- 2. Convert from radians to degrees.
 - (a) $5\pi/6$
- (b) 2
- 3. Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle of 30°.
- 4. Find the exact values.
 - (a) $tan(\pi/3)$
- (b) $\sin(7\pi/6)$
- (c) $\sec(5\pi/3)$
- **5.** Express the lengths a and b in the figure in terms of θ .
- **6.** If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\pi/2$, evaluate $\sin(x + y)$.
- 7. Prove the identities.
 - (a) $\tan \theta \sin \theta + \cos \theta = \sec \theta$

(b)
$$\frac{2\tan x}{1 + \tan^2 x} = \sin 2x$$

- **8.** Find all values of x such that $\sin 2x = \sin x$ and $0 \le x \le 2\pi$.
- **9.** Sketch the graph of the function $y = 1 + \sin 2x$ without using a calculator.

ANSWERS TO DIAGNOSTIC TEST D: TRIGONOMETRY

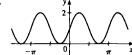
1. (a) $5\pi/3$

FIGURE FOR PROBLEM 5

- (b) $-\pi/10$
- 2. (a) 150°
- (b) $360/\pi \approx 114.6^{\circ}$
- 3. 2π cm
- **4.** (a) $\sqrt{3}$
- (b) $-\frac{1}{2}$
- (c) 2

- 5. (a) 24 $\sin \theta$
- (b) $24 \cos \theta$

- **6.** $\frac{1}{15}(4+6\sqrt{2})$
- 8. $0, \pi/3, \pi, 5\pi/3, 2\pi$
- 9.



English-Chinese Key Terms

Algebra 代数

Calculator 计算器

Expression 表达式

Exponent 指数

Expand 展开

Inequality 不等式

Geometry 几何

Plane 平面

Slope 斜率

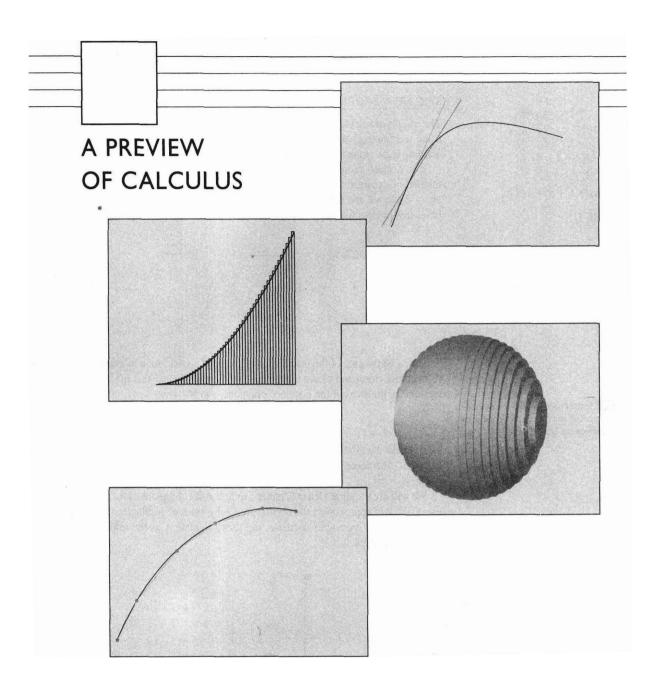
Function 函数

Domain 定义域

Range 值域

Trigonometry 三角学

Polynomials 多项式



Calculus is fundamentally different from the mathematics that you have studied previously: calculus is less static and more dynamic. It is concerned with change and motion; it deals with quantities that approach other quantities. For that reason it may be useful to have an overview of the subject before beginning its intensive study. Here we give a glimpse of some of the main ideas of calculus by showing how the concept of a limit arises when we attempt to solve a variety of problems.