

AMAST Series in Computing: Vol. 7

Formal Models

of Computation

The Ultimate Limits of Computing

Arthur Fleck

University of lowa, USA

HTREMARANAND

E200201080

\\:e World Scientific

Singapore e New Jersey * London Hong Kong

Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Farrer Road, Singapore 912805

USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

FORMAL MODELS OF COMPUTATION
The Ultimate Limits of Computing

Copyright © 2001 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-02-4500-9

Printed in Singapore by Fulsland Offset Printing

Formal Models

of Computation

The Ultimate Limits of Computing

AMAST SERIES IN COMPUTING

Managing Editor: T. Rus
Advisory Board: A. Arnold, E. Astesiano, A. Fleck, W. Lawvere, P. Mosses,

M. Nivat, V. Pratt, C. Rattray, G. Scollo, R. Wachter, M. Wirsing

Vol. 1:

Vol. 2:

Vol. 3:

Vol. 4:

Vol. 5:

Vol. 6:

Algebraic Specification Techniques and Tools for Software Development
The ACT Approach
I. ClaBen, H. Ehrig and D. Wolz

Theories and Experiences for Real-Time System Development
T. Rus and C. Rattray

Construction and Analysis of Transition Systems with MEC
A. Arnold, D. Bégay and P. Crubillé

An Algebraic Approach to Compiler Design
A. Sampaio

Language Prototyping: An Algebraic Specification Approach
A. van Deursen, J. Heering and P. Klint

CafeOBJ Report
R. Diaconescu and K. Futatsugi

Dedicated to Jean

for so many things, it would take another book to say.

Preface

Philosophical Orientation

The general goal of this book is to develop an understanding of the
ultimate and insurmountable limits of computing. In order to understand
these limits better, we seek to view them from both sides — to understand
both what can be computed and what is inherently impossible. These limits
vary depending on the amount and character of the available computing
resources. The boundaries of what’s possible are explored for a variety of
combinations of computing resources. To this end, a varied collection of
computational models is considered. These models are formulated at a high
level of abstraction. The purpose of this abstraction is to ensure that the
analysis applies to any suitable “computer”. To achieve this level of
abstraction, we develop precise (and machine independent) definitions, and
follow them with rigorous deductions of the capabilities that are implied.

The material of this book introduces established formal models of
computing. Developing the models involves understanding precise
definitions, and rigorous reasoning based on these definitions. This precision
and rigor provide a discipline that the author believes to be of great value to
those working in computer science. On the other hand, formality cannot
replace intuition. Insight and intuition are what provide the inspiration that
guides technical development. However, intuition is by its very nature
imprecise and therefore prone to error, and so an associated formalism is a
necessity. A danger is that formality may obscure intuition. Formalism is
developed in this book in the spirit of a ratification of the associated
intuition, and the presentation weaves intuition and precision into a single
fabric of insight and understanding. A significant strength of this book is that
neither rigor nor intuition is sacrificed for the sake of the other. Rigor is
developed as a refinement of intuition, and each is used to deepen the
appreciation of the other.

vii

viii Formal Models of Computation

This approach to understanding the inherent limitations of computation
was initiated even before the invention of electronic computers! The
profound work by Alan Turing provided an inspiration for the kind of deep
insights that could be achieved through theoretical investigations. Turing
was pursuing questions first raised in formal logic and his work pre-dated
the development of general-purpose electronic computers. When John von
Neumann. was later formulating his ideas for these devices, he did interact
with Turing. Nevertheless, the initial stages of development of electronic
digital computers proceeded on an ad hoc basis. The subsequent recognition
of computer science as a distinct intellectual discipline was initially largely
motivated by theoretical studies along the lines presented in this book.

One of the features of this book is that in addition to the most familiar
models, we introduce a number of variations and applications along the way.
The variations are not essential to the main thread of the development, and
sections that elaborate them can safely be omitted without loss of continuity.
However, the selection of a few that attract the reader’s interest can augment
the main line of investigation and help achieve a deeper understanding. By
exhibiting alternative models and examining their properties, we seek to
shed light on what may appear to be arbitrary choices in the standard
models. In addition, the brief digressions into a few practical applications are
intended to keep the reader’s motivation at a high level — a crucial
ingredient in the learning process.

Comments for Readers

Books that develop the basic theoretical ideas covered here usually fall
into one of two categories. One approach is to begin with the most general
models (e.g., Turing machines) and proceed through a series of restrictions
on available resources and capabilities to simpler and simpler models,
studying the reduction in the limits of computations that result. The second
approach is the exact opposite, namely to begin with the simplest model (i.e.,
finite state machines) and consider a series of extensions of the
computational resources and capabilities and the resulting expansions in
computational power. The approach taken in this book is the latter. The
finite state component persists throughout each of the enriched models of
computing, and mastering the understanding of this aspect at the outset eases
the way for the increasing complication. We take advantage of this in the
presentation, and feel it aids in learning the material.

Preface

The material in this area is intellectually deep, and it is highly
challenging to master. This book is unrelenting in its attention to the
blending of intuition and rigor that is required to fully understand the area.
This is one of the keys to achieving proficiency in this area. The intuitive
perspective enters not only in the examples and discussions of the results,
but also in the proofs. In fact, it is really in the formal proofs that intuition
and rigor are most advantageously intertwined. The proofs are used not just
to justify the results, but as a vehicle to create deeper insight.

This book emerged from notes and lectures resulting from many years of
teaching the material. The level of the presentation assumes that the student
is an upper-level undergraduate, or a beginning graduate student. The
material presented covers all the topics suggested in the ACM curriculum
guidelines for the Theory of Computation course!2. The background
assumed of the reader includes some general knowledge of computers and
programming. We do not explicitly consider programs as such, although at a
somewhat more abstract level the idea of algorithm is an emphasis of the
book. However, for intuition and motivation, experience in programming
computers is vital. The most crucial technical background is a good course in
what is usually referred to in computer science curricula as ‘“discrete
structures”. In particular, some prior exposure to abstraction, rigor, and
methods of formal proof is assumed. Especially the idea of inductive proof is
heavily used. A brief synopsis of the most critical supporting material is
given in Chapter 0.

In the author’s experience, working problems is an essential means of
gaining a full understanding of the material. In this sense, there is a good
analogy with learning computer programming — one can listen to lectures,
read about programming, and study programs of others, but deeper
understanding is not developed without actually writing programs yourself.
So it is with the material in this book — to learn it well requires active
participation, so work as many problems as you can. Therefore to this end,
there are numerous problems at the end each chapter, and sample solutions

IA. B. Tucker (ed.), “Computing Curricula 1991, Report of the ACM/IEEE-CS Joint
Curriculum Task Force”, ACM order number 201910 (full report); also, Commun. ACM 34, 6
(June 1991), 68-84 (summary).

2 H. M. Walker & G. M. Schneider, “A revised model curriculum for a liberal arts degree in
computer science”, Commun. ACM 39,12(Dec. 1996), 85-95.

X Formal Models of Computation

for some are included in an appendix. The student is urged to attempt to
solve a problem before consulting the sample solution. Also, note that these
solutions are just samples and not the only correct ones, so if you devised a
different solution, do not assume it is necessarily wrong or inferior.

Notational Conventions

Headings of optional sections are marked with the symbol f. We also use
the special symbol Q to denote the ends of proofs and examples, and by this
means seek to avoid any confusion by the reader about when a technical
portion has been completed and where follow-up discussion about it begins.
The problems with sample solutions are marked with * and the most

challenging problems are marked with the symbol ¥,

Electronic Links

The author’s Web page (http://www.cs.uiowa.edu/~fleck/) contains a
link to material related to the book, including an up-to-date errata. The
author invites readers to email a report (fleck @cs.uiowa.edu) of any errors
they detect.

Acknowledgements

I am appreciative of the reactions and questions of many past students
for the improved presentation that has resulted. Also, my thanks go to
Sungwon Kang and Hantao Zhang for their helpful comments on earlier
versions of the manuscript. Finally, the enthusiastic support of Teodor Rus
for getting this book into print is gratefully acknowledged.

Arthur C. Fleck
Iowa City, Iowa

Table of Contents

Chapter 0 — Mathematical Preliminaries
0.0 Introduction
0.1 Sets and tuples
0.2 Functions and relations
0.3 Graphs and trees
0.4 Proof techniques
0.5 Suggestions for further reading

Part I - The Finite State Paradigm

Chapter 1 — Regular Expressions and Acceptors
1.0 Introduction
1.1 Regular Expressions
1.2 Finite state acceptors
1.3 Equality of regular expression and acceptors
1.4 Two-way acceptors*
1.5 Summary
Exercises

Chapter 2 — Properties of Regular Languages
2.0 Introduction
2.1 The pumping lemma and non-regular languages
2.2 Additional properties of regular languages
2.3 Regular languages and quotients
2.4 An application to structured programming?
2.5 An application to algorithm design
2.6 Summary
Exercises

Chapter 3 — Transducers and Other Variations
3.0 Introduction
3.1 Transducers and their functions
3.2 State minimization

*Section with this symbol can be omitted without loss of continuity.

Xi

~N N =

14

24

26
28
41
60
69
80
81

90
91
97
105
115
120
127
128

136
137
147

Xii

3.3 Black box experiments?
3.4 Multi-tape automata
3.5 Summary

Exercises

Formal Models of Computation

161
169
179
180

Part II — Context-free Grammars and Automata

Chapter 4 — Basic Grammar Definitions

4.0 Introduction
4.1 Definitions and basic properties
4.2 Derivation trees and ambiguity
4.3 Normal form grammars
4.4 Regular grammars
4.5 Programming language syntax*
4.6 Summary

Exercises

Chapter 5 — Pushdown Store Automata

5.0 Introduction
5.1 Basic definitions
5.2 Equivalence with context-free grammars
5.3 Deterministic push-down acceptors
5.4 Summary
Exercises

Chapter 6 — Properties of Context-free Languages

6.0 Introduction

6.1 Closure properties

6.2 The context-free pumping lemma
6.3 Parsing and other algorithms

6.4 Grammars as systems of equations?

6.5 An application to recursive program analysis?

6.6 Summary
Exercises

188
189
201
210
217
222
234
235

242
243
252
262
275
276

282
283
293
302
311
320
335
336

Table of Contents xiii

Part III — General Computability Models

Chapter 7 — Context-sensitive Languages

7.0 Introduction 342
7.1 Basic definitions and results 343
7.2 Linear bounded automata 357
7.3 Closure properties of context-sensitive languages 377
7.4 Summary 384

Exercises 385

Chapter 8 — Turing Machines and Computability

8.0 Introduction 390
8.1 Basic definitions 391
8.2 Turing machines and recursive functions 409
8.3 Turing machines and the RASP model 422
8.3 Turing recognizers and unrestricted grammars 429
8.5 Summary 440

Exercises 442

Chapter 9 — The Universal Machine and Impossible Computations

9.0 Introduction 448
9.1 A Universal Turing machine 449
9.2 The halting problem and related questions 458
9.3 Decision problems for grammars 467
9.4 Decision problems for other models 479
9.5 Summary 483

Exercise 485

Appendix: Sample Solutions

Chapter 1 491
Chapter 2 494
Chapter 3 498
Chapter 4 500
Chapter 5 505
Chapter 6 508
Chapter 7 511
Chapter 8 514

Chapter 9 520

Xiv Formal Models of Computation
Bibliography 523

Index 529

Chapter 0

Mathematical Preliminaries

Section 0.0: Introduction

While this book is about computing, it takes an abstract and formal approach
in its investigations. At the heart of the content of this book is providing
statements of the basic definitions with impeccable precision, and deducing
the conclusions that flow from them with indisputable logic. We are mainly
interested in establishing properties that entire categories of computations
must possess rather than considering individual computations. This means
that the ability to reason about formal systems is critical to following our
development.

In this chapter we provide a succinct review of the mathematical
prerequisites that the reader needs to understand in order to assimilate the
ideas of this book. It is not intended that the coverage provided here will be
sufficient for the reader with little or no prior exposure to this material, and
this section is not a substitute for the study of appropriate background as
outlined in the Preface. It is expected that the reader has previously studied
these topics, and needs only to be reminded of some of these ideas. In fact,
most readers should not need to do more than skim this chapter to align their
previous background with the terminology and notation used in this book.
Since terminology on these basic topics differs little from one writer to

2 Formal Models of Computation

another, this should require minimal attention from readers with appropriate
prerequisites.

Section 0.1: Sets and tuples

The most pivotal formalism used in this book to accomplish our goals is that
of sets and their properties. The essential concept of set is both elementary
and natural. It simply consists of grouping a number of distinct elements, the
members, into a single unit, the set. Operations and properties that are
common to all members of a set can then be treated once for the entire group
rather than repeatedly for each of the members. Once we have some basic
formalisms established, we will virtually always take the approach of
building on them to develop the next one. However, as the first formalism to
be introduced, sets cannot be explained in terms of a previously studied
formalism. Therefore we must take another tack, normally either selecting
abstract axioms that capture the relevant properties, or placing more reliance
on informality and intuition. In this section we take the latter approach.

We will always employ sets within a specific universe of discourse. This
gives us a definite context in which statements are to be interpreted. A
statement such as “‘all persons over the age of 18 by election day are allowed
to vote” is not sufficiently precise for our purposes. We need to know in
addition, for example, that these persons are citizens of, for example, the
United States. In such a case our universe of discourse might be all persons
who are citizens of the United States (and we may wish to incorporate other
constraints as well). A basic premise we will always assume is that there is a
pre-determined collection — the universe — of all the objects that are in the
domain of discussion. The universe will be selected as context for the issues
we wish to discuss. For example in computing, one frequently used universe
is the collection Nat of all natural numbers (i.e., non-negative integers), Nat
={0,1,2,3,... }.

Once the universe is settled, to define a set we just need to describe how
the elements of that set are determined. The key relationship for defining a
set S is membership — if an object x from the universe is an element of S,
we say that x is a member of S and write xe S. There is no ordering between
the members of a set that is implied by the fact of their membership. That is,

Mathematical Preliminaries 3

sets are deliberately an unordered structure for aggregating elements. Also,
elements never occur in a set repeatedly — either an element is a member of

a set or it’s not.

Sets may be defined in a number of ways. As long as it is clearly
determined which elements are members of the set (and which are not), that
is all that matters. One standard set notation is to write the elements of the
set enclosed in "curly braces”, sometimes called the roster notation. For
instance, {2, 4, 6} denotes the set with the three members 2, 4, and 6 (say
from the universe Nat). While we must pick an order to write down the
elements of a set, this should not be interpreted as establishing an order
between the elements. Thus {2, 4, 6} and {4, 2, 6} are two notations for the
same set. Most of the sets of interest will be infinite, and for infinite sets we
cannot simply list all the elements. The set notation is extended to permit the
description of infinite sets with the following set comprehension, or set
abstraction notation: {form of item | property of item}.

The “item form™ portion of a set comprehension describes the form of
potential members of the set, and the “property” portion describes a
condition that must be satisfied in order for items of the indicated form to be
members of the set — the set defined consists of all items of the indicated
form having the specified property. For example, {neNat | n>5} describes
the infinite set of all natural numbers greater than 5, {6, 7, 8, ... }. Of course,
with this notation the set that is described may be either finite or infinite. The
last example is an infinite set, while {ne Nat | 0<n<9} is finite. Often the
universe is implicitly clear from context and we may simply write {n | n>5}.
Either the “item” description or the “property” description may be more
involved. For instance, {2#n | ne Nat} describes the set of all even natural

numbers.

Unrestricted use of informal definitions of sets can lead to paradoxes —
logically impossible situations. No doubt the best known of these is
Russell’s paradox that is stated as follows: let r denote the set of all those
sets which are not members of themselves, R = {S is a set | S&S}. At first
glance this appears to be a well-defined, but somewhat curious collection
(since sets we normally conceive of are never members of themselves).
However, if we ask the question of whether R is a member of R we find
that this collection is much more than just “curious”. Suppose that Re R.

