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PREFACE

The International Conference on Differential Equations and Nonlinear Mechanics
was hosted by the University of Central Florida in Orlando from March 17-19,
1999. One of the conference days was dedicated to Professor V. Lakshmikantham in
honor of his 75" birthday. 50 well established professionals (in differential
equations, nonlinear analysis, numerical analysis, and nonlinear mechanics)
attended the conference from 13 countries. Twelve of the attendees delivered hour
long invited talks and remaining thirty-eight presented invited forty-five minute
talks. In each of these talks, the focus was on the recent developments in differential
equations and nonlinear mechanics and their applications. This book consists of 29
papers based on the invited lectures, and I believe that it provides a good selection
of advanced topics of current interest in differential equations and nonlinear
mechanics.

I am indebted to the Department of Mathematics, College of Arts and Sciences,
Department of Mechanical, Materials and Aerospace Engineering, and the Office of
International Studies (of the University of Central Florida) for the financial support
of the conference. Also, to the Mathematics Department of the University of Central
Florida for providing secretarial and administrative assistance. I would like to thank
the members of the local organizing committee, Jeanne Blank, Jackie Callahan,
John Cannon, Holly Carley, Brad Pyle, Pete Rautenstrauch, and June Wingler for
their assistance. Thanks are also due to the conference organizing committee,
F.H. Busse, J.R. Cannon, V. Girault, R.H.J. Grimshaw, P.N. Kaloni, V.
Lakshmikantham, R.N. Mohapatra, D. Nicholson, K.R. Rajagopal, and A. Sequeira.
The invited speakers of the conference, especially Shair Ahmad who delivered the
banquet talk, and everyone who attended the conference deserve a special mention
for making this a success. My special thanks are due to Jackie Callahan for typing
the manuscript carefully. Also, I wish to thank J.R. Martindale, Editor, and the staff
of Kluwer Academic Publishers.

Finally, I thank my wife, Rani, for her ideas, devotion, and for having a
vision for me; and my older son, Ravy, for his computer assistance, and to my
younger son, Gopi, for his support and understanding, throughout the stages of the
conference.

K. Vajravelu
Orlando, Florida
June 2000
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1 PROPERTIES OF THE RADII OF
STABILITY AND INSTABILITY

Patricia Anderson

Union College

Lincoln, NE 68506-4316

and

Stephen R. Bernfeld

University of Texas at Arlington
Arlington, TX 76019-0408

1. INTRODUCTION

The radius of stability and the radius of instability of the zero solution of the
differential equation x”= f(#,x) were introduced by Salvadori and Visentin [9],
[10]. These radii in some sense provide a measure of the “region” of stability or
instability of the zero solution. This knowledge has been used in the study of small
solutions x,(r) of perturbations of the differential equation x"= f(t,x) given by

x,=f (t,xp) + h(t,xp). In particular a relationship between the radius of stability

of the zero solution of x”= f(#,x) and its total stability was also introduced in [9]
and [10]. Having been motivated by mechanical systems subject to conservative
perturbations these authors analyzed the total stability of x”= f(z,x) using the
perturbed differential equation x” = g(¢,x,A) where g(¢,x,0)=f(t,x) and A is a
parameter in some Banach Space f. In this paper we often will assume f is the
real line.

In this paper we wish to study the continuity properties of the radii of stability
and instability in terms of the total stability of the zero solution of x"= f(z,x). We
generally only consider the scalar case (although some extension to higher
dimensions are discussed). We provide results in the case where the perturbed
differential equation has a bifurcation phenomenon and study the properties of the
radii of stability and instability in this case.

1
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2 Anderson and Bernfeld

2. PRELIMINARIES

Consider the unperturbed differential equation given by
%" = fn%) (2.1)
where f:[Rx D, R] and D is a neighborhood of the origin.
Let the perturbations of (2.1) be given by
x, = g(t,xp,l) (2.2)
where g(t,x,A) is scalar in x and g€ C[Rx DXA, [R{] for some set A C R such
that the origin is an accumulation point of A. We also assume that
a(|/1 |) < " g(t,x,A)— f(t,x) ” £ b(| A |) where
(*) b(-)a(-):R* > R* with
a(0)=5b(0)=0
in which both a(-) and b(-) are strictly increasing and continuous.

We shall often restrict our attention to the case in which the unperturbed system
is the autonomous differential equation

x'= flx) (2.3)
where f € C[D,R]. Assume also that £(0)=0.
Let the perturbations of (2.3) be given by
x; = g(x,.4), 2.4)
where g(x,/l) satisfies (*).
Denote the solutions of (2.3) through (to,xo) by x(t,to,xo) and denote the
solutions of (2.4) through (to,xpvo) by xl,(t,to,xpvo).
The following definitions of the radius of stability and the radius of instability
of the zero solution were given by Salvadori and Visentin [10]. (See also [11].) For

completeness we shall consider (2.1) and provide the definition in the case in which
xeR".

Definition 1. [11] The radius of stability is defined to be r(to,e) where
r(tO,E) = sup{SZ 0: " X5 ” <0 : implies that "x(t,to,xo)n <¢ forall t > to}.

Definition 2. [11] The radius of uniform stability is defined to be r (&) where
r(e)= inf{r(to,e) S I}.

Definition 3. [11] The radius of instability is defined to be R(to) where
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R (z‘o) = {supn > 0 : there exists two sequences {x,.} and {ti}with x; €D and
t, €1 for all i € R such that "x(t,.,to,x,.)"Sn for all i e N}.

Definition 4. [11] The radius of non-uniform stability is defined to be R where
R= {supn >0 : there exists three sequences {x,. } {ti} and {toﬂ,}

such that “x(ri,tovi,xi)HZ n for all i €N, where lim || x; | = 0 and
i—eo

lim #z,;, =co and ¢, 2 ¢,; for all i € N}.

The following definition of conditional total stability was given by Salvadori
and Visentin, [9], [10].

Definition 5. The zero solution, x =0, of (2.1) is conditionally totally stable if for
each € >0 and t, >0 there exists 9, (tO,E) >0 and 9J, (to,s) >0 such that for each

|x,| <8, and for each A€A with|A|<8, the solution x,(t,7,%,) of (2.2)

satisfies
“ X, (t.19,%,) ” <¢ for every t>t,.

Theorem 1. ([2]) The zero solution of (2.3) is uniformly totally stable if and only if
there exists a nested family of contracting compact neighborhoods of the origin
which are invariant and asymptotically stable.

A bifurcation theorem given in [6] is now presented.

Theorem 2. Suppose that g(O,/l)EO and the origin of (2.4) is asymptotically

stable for A =0 and completely unstable for A >0. Then there exists A’ >0 and a
neighborhood 7 of the origin such that if A € (O, /1*) and M, is the largest invariant

compact subset of 7'\ {0}, then (M /1) is a family of asymptotically stable compact
sets bifurcating from {0 }.

3. PRIMARY RESULTS

We now present some properties of the radii of stability and instability. We use ||

to denote the norm in one dimension.

Proposition 1. Suppose that the zero solution of (2.1) is conditionally totally stable.
Then for each 7,€l and for each £€>0 there exists 5(t0,£) >0 such that

r(to,s,/l) need not be continuous in A for each A with {> | € (0, 5).

An example is given which depicts Proposition 1.
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Example 1. Let x" = f(x) where

) 2n+1
(1) (‘x n+1 n+1 2n(n+1)

2n+1 l]

2n(n+l) n G.1)

£ =0(x-1]

0 n

An application of Theorem 1 implies the zero solution is uniformly totally stable

and hence, conditionally uniformly stable. Fix ¢, > 0. Note that for each x, = 1 the
n

solution x (t, fo xo) satisfies

S |-

x(t.ty,%,) =

Now let € = 2kl for some k€ N. Fix 7, >0. Now consider the perturbation of

(3.1) given by
b :f(xp)+). (32)

where A E(O, L) . And so foreach A E(O,—l‘)
4k 4k
1
t,,E,A) < —.
r(o ) %k

This is due to the fact that the right hand side of (3.2) is positive for all

1 1 L :
€ (—— ] and hence, implies that for any x, with

2k’ 2k -1
=
Xy € —, ——
2k’ 2k-1

the solution x(¢) satisfies for some T(xo) >0
x(T,to,xo) B4
And so
lim r(to,s /1) L

A-0* 2k

Now, by uniqueness of the zero solution, it follows that for any X, such that

| x| < L the solution x(z) satisfies
2k -1

lx(t,to,xo)l<8.
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1
r(ty.€)=¢ T,
Hence,
. 1 1
Al.l_)l'g r(tOE,/l) = ﬁ * T_l = r(tO,E,O) = r(to,f).

Now this holds for each k € N. Thus r(to,s, l) is not continuous in A .

Proposition 2. Suppose that the zero solution x =0 of (2.3) is conditionally totally
stable. Suppose also that the origin is asymptotically stable for A =0 and
completely unstable for A >0. Then r(to,s,/l) is not continuous in €.

Proof. By Theorem 2 there exists A" >0 and a neighborhood ©® of the origin such
that if A e (0, /l*) and M, is the largest invariant compact subset of ¥ \ {0} then
(M A) is a family of asymptotically stable compact sets bifurcating from {0}.

Now let A >0 and 1, € I be fixed.

Then, by hypothesis, the origin is completely unstable. Hence, we have for
some 717 >0 that

R(ty,A)=1.
Note, by definition of complete instability, one has for every £ <n

r(tO,E,A) =0.
Now since M, is an invariant set, we see by the fact that R(to,/l) =1 that for some
o >0 andforall e>n r(ty.e,A)2a>0.

Hence,
lim r(tg,€,4)> @ #0=r(ty, R(ty, A). A).

e—R(15,2)"

And so r(to,s,l) is not continuous in €.

Proposition 3. Assume that the zero solution of (2.3) is conditionally totally stable.
Suppose also that the zero solution of (2.3) is not a uniform attractor. Then
r(to, g, l) need not be continuous in €.

The following example is used to depict Proposition 3.

Example 2. Let x” = f(x) where
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, 1 re 1 2n+1
(_1) (—x+n+l) n+l’2n(n+l)
. 1 ‘e 2n+1 _1_
f(x)=1CD ("“;) i) n) - (33)
L
0 T n
—x x<0

1 ; i
Note that for each x, = — the solution x () satisfies
n

1

X\tity, Xg) = —
(t0:70) =
and so x =0 is not asymptotically stable. Let the perturbation (2.2) of (2.1) be

given by

x, = f(x,)+ A (3.4)
where A >0 is chosen such that for all x, with x, € [—%%] one has
x,20
and for |xp|=%
x,=0.

Moreover, there exists a neighborhood (%, f) where one has for each X, € (—;—,i)
xl', <0.
Note that g(0,A)=A#0. Now, choose ¢ :% and let &, <é. Then by

; . . . | -
uniqueness of solutions and since the solution through x, , = 3 satisfies

1) 1
Xp t,to,g =§

r(to,sl,/l):

it follows that
1
rt
Also,
r(ty:€,,4) = 0.
This is due to the fact that the zero solution of the perturbed differential equation
(3.4) is completely unstable and the ball of radius €, intersects this neighborhood of

complete instability. Hence,
lim r(to,é‘z,/l) =0+ r(to,sl,l).

Ey—E,
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Now this holds for each 7, >0 and A >0. Hence, r(to,s,/l) is not continuous in
E.

The next property which is presented again shows that the radius of stability
need not be continuous in €.

Proposition 4. Assume that the zero solution of (2.3) is conditionally totally stable.
Suppose also that the zero solution of (2.4) is stable. Then r(to,s, /1) need not be
continuous in €.

An example is given to depict Proposition 4.

Example 3. Let
x' = f(x)=-x. (3.5)
Construct for each n € N a function g,(x) such that
x< a
0 n
4(x - —1—) x€ (i, 2
n n n|
i (% L]
gn(x) =312x n’ n i
—6(x—i) )ce(g,i
n n n|

=
\Y
RN

Then it follows that the zero solution x, =0 of the perturbed differential equation
given by

'x;) = f(‘xp) = gn ('xp)
is stable. Also, the zero solution x =0 of (3.5) is uniformly asymptotically stable.

24
Now, let & =— and let g, < % Then
Tn Tn

1
r(to,gz,/ln)ﬁ ;

This is due to the fact that for some x, € (li) one has

Note that for x = %
Tn



