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PREFACE

One of the first infinite dimensional control systems to come under scrutiny was
y'(8) = Ay(t) +u(t), y(0)=¢ (1)

where y(t) takes values in a Banach space F and A is the infinitesimal generator
of a strongly continuous semigroup S(t). Research on the time optimal problem
started in the early sixties and branched into other optimal control problems.
However, many basic questions were unsolved at the end of the last century. Since
then, some new results have clarified the panorama but the subject is still in need
of proofs of, or counterexamples to many natural conjectures and it remains a live
research area with many actual and potential applications.

In spite of being, in a sense, the simplest infinite dimensional control system,
the equation (1) models some important control processes such as those described
by the parabolic equation

oy(t,x
M = Ay(t,z) + u(t, z) (2)
ot
where A is an elliptic operator in the space variables @ = (z1, 2o, ... , Tp) in a
domain  of m-dimensional Euclidean space IR™; the domain of A is restricted by
boundary conditions. The control u(t, z) satisfies bounds of the type

/ lu(t, z)|Pdz < C (3)
Q

for some p, 1 < p < o0, or
Ju(t,2)] < C. (4)

These bounds determine the state space F in which (2) is modeled. For the bound
(3) the space is £ = LP(Q). For the uniform bound (4) we take E = L*°(Q), (or,
rather £ = C(£2)). The most physically significant cases are (4) for heat processes
and (3) with p = 1 for diffusions. On the other hand, p = 2 leads to the simplest
mathematics since the state space L2(12) is a Hilbert space.
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viii INFINITE DIMENSIONAL LINEAR CONTROL SYSTEMS

We consider two optimal control problems for the equation (1). Both of them
include a target condition

y(T)=17. (5)
In the norm optimal problem we minimize

ess. sup ||u(t)||
0<t<T

among all solutions of (1) satisfying the initial condition y(0) = ¢ and the target
condition (5); the control interval 0 < ¢ < T is fixed. In the time optimal problem
the controls satisfy a fixed bound such as

ess.sup ||u(t)]| <1,
0<t<T

and we minimize 7" subject to the initial and target condition.

The time optimal problem received privileged attention from the very start
of control theory, but this has been less the case for the norm optimal problem. It
was known for a long time that time optimality implies norm optimality, but that
the two problems are far from equivalent in the infinite dimensional setting seems
to have been realized much more recently. However, there are many situations
(determined by conditions on the semigroup S(t) or on the target ) where time
and norm optimality are essentially equivalent.

Most of this book deals with the relation among time and norm optimality
and Pontryagin’s mazimum principle

(S(T —t)*z,a(t)) = max (S(T —t)*z,u) (6)

lull<1

(|lu]] < minimum norm for the norm optimal problem). The maximum principle
with 2 € E* = dual of F is a necessary and (almost) sufficient condition for
time and norm optimality in finite dimension.? The finite dimensional theory
extends to the equation (1) when S(t)E = E for t > 0 (in particular when S(t)
is a group) but the similarities with the finite dimensional case end here. In
general, special assumptions on the target j are needed to make (6) a necessary
condition for optimality (with z in a space larger than £*) and, conversely, special
assumptions on z are needed to make (6) a sufficient condition for optimality
of u(t). In fact, singular optimal controls (those that do not satisfy Pontryagin’s
maximum principle, or satisfy it only in a weak form) are the main actors in various
places of this monograph.

I Even in finite dimension, sufficiency of the maximum principle for time optimality
requires additional conditions on the initial condition ¢ and/or the target Y.
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Much of the material is independent of the maximum principle. Under suitable
conditions on z, (6) implies the bang-bang principle

lu(®)]| =1 a. e. (7)

but (7) can be also be proved without intercession of the maximum principle for
time optimal controls. Other results (some depending on the maximum principle,
some not) include various well posedness properties of control problems, that is,
continuous dependence of optimal controls on parameters of the system such as
the initial and target conditions.

This monograph is organized as follows. The first two sections of Chapter
1 contain a survey of some finite dimensional results with an outline of infinite
dimensional systems in the third. The aim is reveal that some infinite dimensional
results are descendants of finite dimensional theorems. In some cases, however
the “family resemblance” is slight, and many other results have no counterpart in
finite dimension. We have included some references to the early history of infinite
dimensional control theory in 1.3.

Chapter 2 and Chapter 3 deal with the system (1) in an arbitrary Banach
space E with a view towards the modeling of partial differential equations such as
(2) in LP(2) for 1 < p < oo. However, we do also other equations; for instance,
some of the most interesting examples in 2.6 and 2.7 use the “proto-hyperbolic”
equation y; (¢, ) = —y.(t,x). These results suggest that a systematic study of the
maximum principle (or, rather, of its interpretation) for equations of hyperbolic
type would be worth undertaking, but this is not attempted here.

Chapter 4 is on the modeling of the equation (2) in C(€2). Due to existence
requirements, the control space must be expanded to L>() and we can request
only weak measurability of the controls with respect to ¢; this corresponds to
driving (2) with controls in L°°((0,T) x Q).

Chapter 5 is on the modeling of the equation (2) in L'(£2). The control space
L1((0,T) x Q) places us in a adverse existence situation, thus we must replace
it by a space of (weakly measurable) controls taking values in the space 2(Q) of
Borel measures in Q.

There is an obvious parallelism between the two models in Chapters 4 and
Chapter 5, so much so that one can translate results from one case to the other
using a “replacement chart” where C(£2) is replaced by L'(Q), L°°(£2) is replaced
by () ... and so on. However, the similarity does not go all the way. Although
both the geometries of L>°(2) and $(0) are devoid of smoothness, the control
space L°°(Q2) allows uniqueness results for optimal controls not unlike those in
smooth spaces, while in the space ¥(Q) uniqueness breaks down completely both
in the time optimal and the norm optimal problems. In a sort of compensation, in
the £(Q) setting the bang-bang principle (7) is, in certain situations, essentially
sufficient for both time optimality and norm optimality, a result that is not known
to hold in any other space.
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The treatments in Chapters 4 and 5 could have been unified by means of
the theory of Phillips adjoints, but the gain in brevity and conciseness would not
outweigh the additional insight that each of the parallel theories afford.

The first two sections of Chapter 6 deal with some results that are known
to hold for a very restricted class, self adjoint semigroups in Hilbert spaces, and
examine the possibility of generalizations to other semigroups and Banach spaces.
In the last section we include some recent references on the time and norm optimal
problems as well as on problems not treated in this book but related to the material
in one way or another, among them minimization of functionals other than time
or norm (in particular, the linear-quadratic problem) and a sketch of the methods
used in the control theory of semilinear equations. Some of these methods lean on
the linear theory.

Infinite dimensional control theory is increasingly becoming the calculus of
variations of the new century. We believe this monograph will have something to
say to specialists (even if in a restricted area). On the other hand, the book is also
accessible to beginners; the only advanced prerequisite is a course in basic linear
functional analysis including semigroup theory.

ACKNOWLEDGEMENTS. In the spring of 2002 I was invited by the Istituto
Nazionale di Alta Matematica Francesco Severi, sponsored by Dr. Piermarco
Cannarsa, to lecture and do research on the time and norm optimal problem
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motivated the writing of a set of notes that, after some refinements and additions,
became this monograph. In particular, most of the material in 2.6, 2.7, 6.1 and
6.2 (not in print at the time) owes much to conversations with Dr. Cannarsa and
interaction with colleagues and students at Tor Vergata. My thanks go also to
David Mora, who did the final printing and assisted in many other ways.
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CHAPTER 1

INTRODUCTION

1.1. Finite dimensional systems: the maximum principle. Half a century
ago, Bellman, Glicksberg and Gross [1956] figured out the time optimal controls
@(t) for the linear, time invariant ordinary differential system

Y/ (t) = Ay(t) + Bu(t), y(0)=¢ (1.1.1)

where A (resp. B) is a n x n matrix (resp. a m x n matrix). Controls u(t) are
measurable JR™-valued vector functions u(t) = (u;(t),...,un(t)) and a control is
admissible if

lu@®)]| <1 a.e.in 0<t<T (1.1.2)
where || - || is the mazimum norm
llu]| = max(|uil, . .-, [twm]) - (1.1.3)

In the time optimal problem we drive the initial condition ¢ € IR"™ to a target
g € IR" in minimum time 7" by means of an admissible control u(t); “driving to a
target ¥ in time T'” means the target condition

y(T,¢u) =y (1.1.4)

must be satisfied, where y(t,(,u) is the solution y(t) of (1.1.1). In the norm
optimal problem, the controls are m-vector functions with measurable, essentially
bounded components, and one drives ¢ to the target ¥ in a fixed time interval
0 <t < T, so that (1.1.4) is satisfied; the objective is to minimize the norm

“u(‘)“Lcc(O’T;R‘mr) = ess.sup |lu(t)]| . (1.1.:5)
0<t<T

It was proved in Bellman et al. [1956] that every time optimal control u(t) satisfies

(B*S(T — t)*z,a(t)) = max (B*S(T — t)*z,u) (1.1.6)

flull<1

in the control interval 0 < ¢ < T' = optimal time, where S(t) = e*4 and the multi-
plier z € IR™ is not zero. This result was immediately submerged by Pontryagin’s

1



2 INFINITE DIMENSIONAL LINEAR CONTROL SYSTEMS

maximum principle, announced by Boltyanski, Gamkrelidze and Pontryagin in
[1956]. The maximum principle could deal with nonlinear equations and general
cost functionals and included the linear time-invariant result as a very particular
case. However, the proof in Bellman et al. [1956] was so elementary that invited
generalizations to infinite dimensional spaces, these generalizations motivated by
the modeling of optimal problems for partial differential equations (for more on
this see 1.3). Here is the proof of (1.1.6), which holds as well for the norm optimal
problem.

Theorem 1.1.1. (a) Let u(t) be time optimal in the interval 0 < t < T. Then
the mazimum principle (1.1.6) holds for a multiplier = # 0. (b) Let u(t) be norm
optimal in the interval 0 < t < T. Then u(t) satisfies the mazimum principle

(B*S(T —t)*z,a(t)) = ”Hl”d<X (B*S(T — t)*z,u) (1.1.7)
ul|<p

for a multiplier z # 0, where
p = lla()llL=0,1;mm) - (1.1.8)

Proof. Solutions of (1.1.1) are given by the variation-of-constants formula!

y(t) = y(t, C,u) = SE)C +/0 S(t — o) Bu(o)do . (1.1.9)

The reachable space R™(T') of (1.1.1) is the subspace of IR™ of all elements of the
form

T
Y= /0 S(T — o)Bu(o)do (1.1.10)

with u(-) € L>°(0,T; IR™) (that is, the space of all y € IR" to which we can drive
from ¢ = 0 with controls in L>(0, T; IR™)) and B3°(T) is the subset of R*(T) of
all elements of the form (1.1.10) with?

lu®)| <p a. e in0<t<T. (1.1.11)

Clearly, BJ°(T) is a convex subset of IR" containing the origin. To show (b),
assume that u(¢) is norm optimal, and let p be given by (1.1.8) (that is, let p
be the optimal norm, which means the norm of the optimal control). The target
condition is

S(T)¢ +/0 S(T — o)Bii(o)do =7,

! Due to the controls being merely measurable, solutions are no more than absolutely
continuous; the derivative y'(t) exists a. e. and satisfies (1.1.1) a. e.
2 Note that (1.1.10) will hold for many u(-); only one has to satisfy (1.1.11).
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so that
T
g—S(T)¢ = /0 S(T — o)Bu(o)do € BEO(T).

Moreover, § — S(T')C is a boundary point of BX°(T). In fact, if it were an interior
point, since 0 € B°(T") we would have

r(y—8(T)¢) € B*(T)

for some r > 1. This means
74
r(f — S(T)C) = / S(T — o) Bulo)do
0

for some control u(t) satisfying the constraint (1.1.11) or, equivalently,

u(o)
T

T
y= S<T><+/O ST - 0)BY 45,

hence we can drive from ¢ to ¢ in time 7" with a control u(o)/r whose norm is

e <2

< P
r HLC’O(O,T;R’"") - p

This contradicts the norm optimality of u(t). Having proved that § — S (T is a
boundary point of B°(T'), we can separate it from BZ*(T') by means of a nonzero
z € IR™; this means

(2,9) < (2,5 — S(T)C) (1.1.12)

for every y € BS°(T), or

<z, /OT S(T — U)Bu(a)d0> < <Z/OT S(T - a)Ba(a)do> (1.1.13)

for every u(-) satisfying (1.1.11). This inequality can be written

T 5
/ (2,8(T — 0)Bu(o))do < / (2,8(T — 0)Bu(o))do
0 0
/ (B*S(T — 0)*z,u(0))do < / (B*S(T — 0)*2,u(0))do (1.1.14)
0 0

which is equivalent to (1.1.7). This ends the proof of (D).
The proof of (a) is similar. Again, § — S(T)¢ € B°(T) and to do the
separation argument we need to show that Y — S(T')¢ is a boundary point of
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B*(T'). If B{*(T') does not contain interior points (equivalently, if the inclusion
R>(T) C IR" is strict) there is nothing to prove, so we may assume that

R®(T) = R". (1.1.15)

Property (1.1.15) is independent of 7' > 0; in fact R*°(t) is independent of ¢. To
see why, let t > 0 and assume there exists z € IR" such that (z,y) = 0 for all
y € R (¢). This is equivalent to

/;(B*S(t —o)*z,u(o))do = /Ot(z, S(t — 0)Bu(c))do
- (. st ?)Bu(a)do ) =0

0

for all u(-) € L*°(0,¢; IR™), which is in turn equivalent to B*S(t — 0)*z = 0 or
B*S(0)*z =0 for 0 < o < t. Now, B*S(0)*z is analytic, hence this statement is
independent of ¢. In particular, (1.1.15) is equivalent to

B*S(0)*2=0 (6 >0) = z=0. (1.1.16)

Assuming that (1.1.15) (or, equivalently, (1.1.16)) holds, we check that, for any
t > 0 the expression

t
Wl = it {Clzmmm s [ S=)Bula)ia =y} (117
0

defines a norm in R*°(t) = IR", which (as any other norm) must be equivalent to
the norm (1.1.3) of IR™. In particular, this means there exists a constant C(t) such
that, for every y € IR" we can find u(-) € L*°(0, t; IR™) with

ot
= / S(t — o) Bu(o)do, |u()l|z=csmm < COly]l- (1.1.18)

Let ¢/ > t. Then we have
t t
/ S(t — o)Bu(o)do = S(t' — o)Bu(o — (t' — t))do,
0 ¢t
thus, if
t/
v=[ St =)Buelo. ToO)lz=mm < CE)ly]

is the version of (1.1.18) for ¢, we have

cithy<cow ' =>t). (1.1.19)
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Assume §—S(7T')¢ is not a boundary point of Bf°(T'). Then, arguing as in the proof
of (b) we deduce that there exists u(-) € L>(0,T; IR™), |[u(-)|l Lo ,r;mm) <7 <1
such that .
g—S(T) = / S(T — o)Bu(o)do . (1.1.20)
0

Take t < T and rewrite (1.1.20) as
7 — S(t)¢ = /Ot S(t — 0)Bu(a)do — S()C + S(T)¢
" /O (ST = 0) = S(t - o)) Bu(o)do + /t " S(T - 0)Bu(o)do
= /O't S(t — 0)Bu(c)do +y(¢,T). (1.1.21)

We use the fact that y(¢,7) — 0 as t — T, take t sufficiently near 7" and use
(1.1.18) to construct a control v(-) such that [|[v(-)|| = (0,4;mm) < 1 —r and?

/t S(t — o)Bv(o)do = y(t,T). (1.1.22)
0

Putting together (1.1.21) and (1.1.22) we obtain

g=S@)¢ +/0 S(T — o)B(u(o) + v(o))do,

so we can drive from ¢ to ¥ by means of the admissible control u(-) + v(-) in time
¢ < T. This contradicts the fact that 7" is the optimal time, and ends the proof of
(a), always assuming that (1.1.15) holds.

The case where R°(T') # IR" is trivial; here (1.1.16) must fail, thus there
exists z # 0 with B*S(0)*z identically zero. With this 2z every control, optimal or
not, satisfies the necessary conditions (1.1.6) or (1.1.7). This completes the proof
of Theorem 1.1.1.

Condition (1.1.16) and the fact that 2 # 0 implies that (1.1.6) is nontrivial,
that is, it gives information on the optimal control @(t) for almost all ¢ (although
this information may not determine %(t) uniquely; see 1.2).

Conditions (1.1.15) < (1.1.16) also imply that the assumptions in Theorem
1.1.1 are sufficient (with additional conditions in the time optimal case). See
Theorem 1.1.3 below.

It follows from (1.1.6) that if condition (1.1.16) is satisfied then time optimal
controls satisfy not only the bound (1.1.2) but

lu(®)| =1 a. e in0<t<T. (1.1.23)

3 Here it is essential that the constant C(t) in (1.1.18) does not increase as we move ¢
to the right; this is (1.1.19).



