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The subject of this book is the theory of differential
equations and the calculus of variations. It is based
on a course of lectures which the author delivered for a
number of years at the Physics Department of the Lo-
monosov State University of Moscow.
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Introduction

In the study of physical phenomena one is frequently unable to
find directly the laws relating the quantities that characterize a
phenomenon, whereas a relationship between the quantities and
their derivatives or differentials can readily be established. One
then obtains equations containing the unknown functions or vector
functions under the sign of the derivative or differential.

Equations in which the unknown function or the vector function
appears under the sign of the derivative or ‘the’ differential are
called differential equations.” The following are some examples of
dlﬁerentlal equations: :

(1) 7 —= —kx is the equation of radioactive disintegration (& is
the dlsmtegratxon constant, x is the quantity of undisintegrated
substance at time ¢, and % is the rate of decay proportional to
the quantlty of disintegrating substance).

2) ma-,-—F (t r dt) is the equation of motion of a partlcle of

mass m under the influence of a force F dependent on the time,
the position of the partlcle (which is determined by the radlus

vector r), and its velocxty dt The force is equal to the product of

the mass by the acceleratlon
2

3) Zx';+ % ,-{- dz,—4np (x, y, 2) is Poisson’s equation, which for
example is satlsﬁed by the potential «(x, y, z) of an electrostatic
field, p (x, y, 2) is the charge density.

The relation between the sought-for quantities will be found if
methods are indicated for finding the unknown functions which are
. defined by differential equations. The finding of unknown functions
defined by differential equations is the principal task of the theory
of differential equations.

If in a differential equation the unknown functions or the vector
functions are functions of one variable, then the differential equa-
. tion is called ordinary (for example, Egs. 1 and 2 above). But if
the unknown function appearing in the differential equation is a
function of two or more independent variables, the differential
equation is called a partial differential equation (Eq.- 3 is an
instance).
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&

BAI L AT e

14 I. DIFFERENTIAL EQUATIONS

The order of a differential equation is the highest order of the
derivative (or differential) of the unknown function.

A solution of a differential equation is a function which, when
substituted into the differential equation, reduces it to an identity.

To illustrate, the equation of radioactive disintegration

dx ) .
= —kx (1.1)
has the solution

x=oe ¥, (1.1,

where ¢ is an arbitrary constant.

It is obvious that the differential equation (I.1) does not yet
fully determine the law of disintegration x=x(¢). For a full de-
termination, one must know the quantity of disintegrating substance
X, at some initial instant of time ¢,. If x, is known; then, taking
into account the condition x(¢{,)=x, from (I.1,), we find the law
of radioactive disintegration:

X=X e=¥078),

The procedure of finding the solutions of a differential equation
is called integration of the differential equation. In the above case,
it was easy to find an exact solution, but in more complicated
cases it is very often necessary to apply approximate methods of
integrating differential equations. Just ‘recently these approximate
methods still led to arduous calculations. Today, however, high-
speed computers are able to accomplish such work at the rate of
several hundreds of thousands of operations per second.

Let us now investigate more closely the above-mentioned more
complicated problem of finding the law of motion r=r(f) of a

particle of mass m under the action of a specified force F (¢, r, r).
By Newton’s law,

mr=F(t, r, r). (1.2)

Consequently, the problem reduces to integrating this differential
equation. Quite obviously, the law of motion is not yet fully de-
fined by specifying the mass m and the force F; one has also to
know the initial position of the particle

r(,)=r, (1.2
and the initial velocity

; (1.2,)

We shall indicate an extremely natural approximate method for
solving equation (1.2) with initial conditions (1.2,) and (1.2,); the

r(t,)=r,
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idea of this method can also serve to prove the existence of a so-
lution of the problem at hand.

We take the interval of time ¢, <{¢<CT over which it is required
to find a solution of. the equatlon (I 2) that will satisfy the initial
conditions (I.2,) and -(1.2,) and divide it into n equal parts of

length h=T—"0.
[to’ tl]' [tl’ t!]v o G [tn—lv T]’
bl D T v e U

where

For large values of n, within the limits of each one of these small
intervals of time, the force F (¢, r, r) changes but slightly (the
vector function F is assumed to be continuous); therefore it may
be taken, approximately, to be constant over every subinterval
L w1 03], for instance, equal to the value it has at the left-hand
oundary point of each subinterval. More exactly, on the subinter-
val [t,, t,] the force F (¢, r, r) is considered constant and equal to
F (¢, r, r,). On this assumption, it is easy, from (1.2) and the
initial conditions (1.2, and (1.2,), to determine the law of motion
r,(¢f) on the subinterval [¢,, ¢,] (the motion will be uniformly va-
riab]e) and, hence, in par%icular, one knows the values of r,(Z,)

and r,(¢,). By the same method, we approximate the law of motion
r,(f) on the subinterval [¢,, f,] considering the force F as constant

on this subinterval and as equal to F (¢, r,(f,), r,(¢,). Continuing
this process, we get an approximate solution r (t) to the posed
problem w1th initial conditions for equation (I. 2) over the whole
interval [{,, T].

It is intditively clear that as n tends to infinity, the approxi-
mate solution r,(f) should approach the exact solution.

Note that the second-order vector equation (1.2) may be replaced

- by an equivalent system of two first-order vector equations if we

regard the velocity v as the second unknown vector function:

dr S
at %

——F(t r, V). (1.3)

Every vector equation” in three-dimensional space may be re-
placed by three scalar equations by projecting onto the coordinate
axes. Thus, equation (I.2) is equivalent to a system of three scalar
equations of the second order, and system (I.3) is equlvalent to a
system of six scalar equations of the first order.

Finally, it is possible to replace one second-order vector equation
{1.2) in three-dimensional space by one vector equation of the first

- order in six-dimensional space, the coordinates here being r,, r,, r,

i




16 1. DIFFERENTIAL EQUATIONS

of the radius vector r(f) and v,, v, v, of the velocity vector v.
Phase space is the term physicists use for this space. The radius
vector R (¢) in this space has the coordinates (r,, r,, 7., v, v,, U,).
In this notation, (1.3) has the form

dR
7 =0 R®) (1.4) -

(the projections of the vector ® in six-dimensional space are the
corresponding projections of the right-hand sides of the system (1.3)
in three-dimensional space)

With this interpretation, the initial conditions (1.2,) and (1.2,)
are replaced by the condition

R()=R, (1.4)

The solution of (1.4) R=R (¢) will then be a phase trajectory, to
each point of which there will correspond a certain instantaneous
state of the moving particle—its position r(f) and its velocity v (£).

If we apply the above approximate method to (1.4) with
initial condition (I.4,), then on the first subinterval [¢,, f,] we
must regard the vector function @ (¢, R (f)) as constant and equal
to ® (¢, R(f,)). And so, for ¢, <t<<t,+h

dR
717 =0 (tor R (to) );

from this, multiplying by d¢ and integrating between ¢, and ¢, we
get the linear vector function R (?):
R (1) =R (to) +q)(to’ R (to)) (t_to)-
In particular for ¢{=1¢, we will have
R (1) =R (£,) +h® (¢, R(2,)).

Rt;peating the same reasoning for the subsequent subintervals, we
e :

. R (t2)= R (tx)"f‘h(b(tn R (tl) );

................

Applying these formulas n times we arrive at the value R (T).

In this method, the desired solution R (f) is approximately re-
placed by a piecewise linear vector function, the graph of which is
a certain polygonal line called Euler’s polygonal curuve.

In applications, the problem for equation (1.2) is often paésed
differently: the supplementary conditions are specified at two poin{s
instead of one. Such a problem— unlike the problem with the




