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Preface

What could appear simpler than the free space propagation of an homogeneous
and monochromatic electromagnetic plane wave? The electric field E and the
magnetic field H, intimately coupled by the Maxwell equations, seem to behave
so nicely: not only are the vectors E and H proportional and perpendicular to
each other in all points of space, they also lie in a plane which is normal to the
direction of propagation. These fields are linearly polarized and the continuum
of solutions resulting from Helmbholtz’s scalar wave equation is sufficient to
give a complete description of the propagation of this optical wave.

Unfortunately, even in the vacuum, this ideal wave, which extends uniformly
throughout space, does not truly exist. Neither does its geometrical optics
analogue, the infinitely thin ray of light. The optical wave is physically
inhomogeneous and, to treat it correctly, one must therefore decompose
the field using a spectrum of homogeneous plane waves, where each of these
waves obeys the Helmholtz equation.

The complexity increases when we consider guided waves because the fields
E and H dissipate considerably. Interference of light arises in the directions
normal to the waveguide interfaces and results in discrete solutions that
are invariant in the direction of propagation: these are the guided modes.
Longitudinal components e, and h, appear and they are in quadrature
with respect to the transverse components E, and H,, which are no longer
proportional, nor perpendicular to each other. The lines of polarization in the
cross section of the waveguide are no longer straight; their diverse features
sometimes leave an artistic impression. Since the scalar wave equation is no
longer valid, we must therefore use vectorial wave equations; which are much
more general, but whose solutions are considerably more complicated. Finally,
additional difficulties present themselves when invariance in the direction of
propagation (translation symmetry) is no longer valid. Such is the case with
fiber splices and fiber components like tapers, Bragg gratings and couplers.

It is within this context of subtleties that I have elaborated this book. It is
addressed to all graduate students in optics, but particularly to the students
from the fiber optics research group of the Department of Physics Engineering
of Ecole Polytechnique de Montréal. During my career as a professor and
teacher, I discovered that some students, even the brilliant ones, still struggled

Guided Optics: Optical Fibers and All-fiber Components. Jacques Bures
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40796-5

XV



XVI

Preface

at the beginning of their graduate studies with some of the general concepts
of guided waves and fiber components like couplers, tapered fibers and fiber
Bragg gratings.

This is therefore a fundamental book with some high-level refinements,
however we limit ourselves to guided modes within the scope of linear optics.
We begin with Maxwell equations for dielectric media. The resulting vectorial
equations are solved analytically and exactly in the case of one-dimensional
planar waveguides and multiple-cladding step-index optical fibers having
circular symmetry. In all other cases, we rely on purely numerical methods.
A large part is devoted to the theory of optical fiber components and the
modeling of their behavior. Thus, we develop the fundamental notions of
perturbed waveguides, mode coupling, local modes, supermodes, and coupling
between fibers. Apart from a few rare exceptions, we present fully detailed
demonstrations of the equations; this sometimes brings greater weight to the
text, but it also brings greater clarity. A multitude of figures illustrate the theory
and the experimental results. Furthermore, a few indispensable appendices
were added, such as: definitions, properties and integrals of Bessel functions
and modified Bessel functions; as well as the definitions of the absolute
refraction indices of the dielectric media used in the numerical calculations.
Finally, the last chapter presents a series of solved problems.

I am very grateful to the students who, through the fruits of their research,
have significantly contributed in the development of our fiber optics lab. I would
particularly like to thank Dr. Francois Gonthier, Ms. Isabelle Vaillancourt, as
well as Mrs. Patrick Orsini and Denis Perron who have graciously given me
the permission to reproduce certain figures and results from their theses. I
would also like to thank all those who have helped me with my teaching efforts,
especially my colleague professor Suzanne Lacroix, with whom I have had and
continue to have many fruitful discussions.

Department of Engineering Physics Jacques Bures
Ecole Polytechnique de Montréal Professor

August 2008



XVl

Symbols, Operators, and Coordinate Systems

*: complex conjugate

i=+—1

Re, Im: real and imaginary parts of a complex number
J: current density

o: charge density

w: angular frequency

k: wavenumber in the vacuum

A: wavelength in the vacuum

c: speed of light in the vacuum

n: refractive index of a medium; n, (core), na (cladding), n. (external)
¢: dielectric permittivity (€9 vacuum permittivity)

(: magnetic permeability (o vacuum permeability)

1: position vector

fi: unit vector normal to a surface

i, i, k or %, ¥, Z: unit vector of the cartesian components
X, y, z: cartesian coordinates

t, @, 2: unit vectors of the cylindrical polar components
r, ¢, z: cylindrical polar coordinates

E: electric field vector

e;: electric field vector of a mode j

&: normalized electric field vector of a mode j

E,, e, &: transverse electric field vectors

H: magnetic field vector

h;: magnetic field vector of a mode j

flj: normalized magnetic field vector of a mode j

H;, h,, fxt: transverse magnetic field vectors

S: Poynting vector

¢, h.: longitudinal components of electric and magnetic field vectors eand h

ex, €, OT €, €y Cartesian or polar transverse components of electric field
vector e

hy, hy or hy, hy: Cartesian or polar transverse components of magnetic field
vector h
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XV | Symbols, Operators, and Coordinate Systems

e;, hy: amplitudes of transverse electric and magnetic field vectors e, and h,

B: propagation constant along the z-axis

aj = bjexp(if;z): modal amplitude of a mode j (invariant cross-section
waveguide)

a;(z) = bj(z) exp {i [; Bj(z’) dz'}: modal amplitude of a mode j (variable
cross-section waveguide)

Nj: normalization constant of a mode j

£, m: subscript numbers of the linearly polarized scalar LP,, modes

v, m: subscript numbers of the vector modes TEy,,, TMoy, HE,,, and EH,,,

p Or peo: core radius of an optical fiber, pq: intermediate cladding radius of
an optical fiber

U, W, V: modal parameters and the normalized frequency

Wy, (r): radial field of a linearly polarized scalar LPy,, mode

Wy (r): normalized radial field of a linearly polarized scalar LPy,, mode

V: gradient operator, V,: transverse gradient operator

V2: scalar Laplacian operator, V: transverse scalar Laplacian operator

V2: vector Laplacian operator, VZ: transverse vector Laplacian operator

84: Dirac delta distribution.



The Operators

The Operators

List of the Operators in Cartesian Components Applied to:

A scalar ¥ (x, y, 2)
[ Avector A(x, y, 2) = A, + ZA, = XA, (x, Y, 2)
+ JA, (%, , 2) + 2A,(x, Y, 2)
* Gradient operator V

dient: VW( ) V\D+ia\p AB\I/+A3\II+A8\II
radient: X,9,2) = =% +y—+Z
& ¥ ' 0z ox yay 0z

0A, 0A, 0A 0A,
divergence: V -A(x,y,2) =V, A+ — = !

9z dx 8—)/5

% § 2
3/dx 9/dy 0/dz
A, A A

dA,  9A,
and V,AA =12 —Y—a—
ox ay

curl: VAA(x,y,2) =

« Scalar Laplacian operator V*

I N

V2 (x,y,2) = V¥ e fsmaeh e
B2 Y 922 9x? + ay? + 022

« Vector Laplacian operator V*

V2A(x, y, 2) = VA = R(V2A,) + §(V2A) + 2(V*A,)
3’A

022

V2A(x,y, 2) = V2A = X(V}A,) + 3(V7A)) + 2(VA,)

V2A(x,y,2) = VIA+

XIX



XX I The Operators

List of the operators in cylindrical polar components applied to

A vector A(r, ¢, z) = A, + ZA, = tA(r, ¢, 2)

l A scalar W (r, ¢, 2)
+ ¢A¢(r7 ¢7 Z) + iAZ(r7 ¢7 Z)

* Gradient operator V

L L A X1

Gradient: VW (r, ¢,2) = V¥ — = -
radien (9.2 = VU + i =+ Do
A 109(rA
Divergence: V -A(r,¢,2) = Vi - A+ — = b i
0z r or

10As 0A;

+r8¢ + 0z

T rQ z

1
Curl: VAA(r,¢,z) =~ |0/dr 0/d¢p 9/0z
"I A Ay A,

3(?’A¢) - %}
ar A

and Vt VAN A; =

~ | N>

* Scalar Laplacian operator V2

. 5 2w
V(r,¢,2) = VIV + —

922
V2U(r. 6. 2) azw+1aw+132xy
P, 2= — + —— + —
BEY ar2  r ar 12 d¢?
* Vector Laplacian operator \'&
2 0A A
2 —7 2 P r
VA(Y’¢’Z)_I{VA’_TZW_,_2}
2 0A Ay
£} 2 r N )
+¢{VA¢+7‘_28¢ _r—2}+Z(V Ay)
92A
V2A(r, ¢, 2) = VtZA-*- il
022
A 2044 A
R
= 20A, Ay R
+¢‘V3A¢+r_28¢ “7}+Z(V.E2Az)

0w
Z—
0z



Relations between the Cartesian (x, y, z) and Cylindrical Polar (r, ¢, z) Coordinate Systems

Relations between the Cartesian (x, y, z) and Cylindrical Polar
(r, ¢, z) Coordinate Systems

Between the Coordinates, the Vector Components, and the Derivatives of a
Scalar

{x: rcos¢ {Ax = A, cosp — Ay sing

y=rsing Ay = A;sing + Ay cos¢
owv oV sing oV

— =Ccos¢p— — s

0x ar r 0¢

o .0V cos¢ oV

— =sing— —

0 0 r J0¢

r=.x*+y? A, = Accosp + Aysing
¢ =tan"1(y/x) Ay = —A,sing + Ajcos¢

ow ¢3\IJ +5i ¢8\If
— =cos¢p— +sing——
ar 0x ay
10W ,n¢aw " ¢3\IJ
—— = —sin¢g— +cosp—
r 0¢ 0x ay

Between the Unit Vectors

Xx=1cos¢ — @sing t=%Xcos¢ +ysing
y=rtsing + @pcos¢ ¢ = —xsing +ycos¢
ot ot .
L m e —=0,—=¢
TN =12 or Lo}
xny=2 | 99 _ 0 9 .
ar g
X . A
r ¢
[4
@ Fig. ST Unit vectors X, y and ¥, ¢ in the
5 ¥ cross-section plane for: (a) z going into the page

. and: (b) 2 coming out of the page. ¢ is always
k2 the angle between X and .
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Miscellaneous

Inverse Matrices
-1
[“ b] =l[d ‘b] wilth, el —be
c d Al —c a
o b ¢! 1 (ei—fh) (ch—bi) (bf —ce)
|:d e f] :Z[@f—di) (ai — cg) (cd—af)]
g h i (dh —eg) (bg—ah) (ae— bd)
with A = a(ei — hf) + b(gf — di) + c(dh — eg)

Step Functions or Heaviside Functions

A
b+ ¢ p———m—

> X _—x
0 a

0 when x<0,
H(x)=

4 when x<a,
bH(x—a)+c=
1 when x>0.

c+b when x>a.

Fig. S2 Illustration of the step functions H(x) and bH(x — a) + c.

Dirac Delta Distributions

N dH(x) _ 1 o0 i BT o0 M —ptx?

Sa(x) = = In ﬁwe dk—uh_{rolQ . ﬁe dx,
i

8a(—x) = 84(x), dalax) = m&i(x),

8a(x,y, 2) = 8a(x)8a(y)8a(2),
1

S — %) =
a(x® —a%) 2]

{84(x — a) + 8a(x + a)}.
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XXIV | Miscellaneous

Note that these distributions only have meaning under the integration sign:

+00

+00
f(x)84(x — a)dx = f(a), / 84(x — a)84(x — b)dx = 84(a — b),

f Sa(x)e dx =1, f f f 84(x)84(y)8a(z) dx dy dz = 1.
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