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CHAPTER 13

Nitrogen Metabolism of Amino Acids

P. P. COHEN AND H. J. SALLACH
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l. Scope

This chapter is concerned primarily with the enzymic systems involved

in the transformation or transfer of the amino, amine, and amide nitrogen
moiety of amino acids, amino acid amides, and amines. Reactions involved
in purine biosynthesis and degradation will be discussed in Chapter 18.
Complete coverage of the literature since the publication of the first edition
of this chapter (Z) has not been attempted. Of necessity there has been a
selection of the literature references dictated for the most part by the
interests of the authors. In general, preference has been given to studies
which emphasize the enzymic aspects of chemical transformations.

1



2 P. P. COHEN AND H. J. SALLACH

Recent reviews which cover this general area are those of Cohen and
Brown (2), which deals with the comparative biochemical aspect, and
Meister (3), which is a comprehensive review of the biochemistry of amino
acids.

Il. Deamination
"A. OXIDATIVE

A large number of enzyme systems has been recorded in the literature
in support of the concept-that amino acids as @ group are oxidatively
deaminated in accordance with the following general over-all reaction:

RCHCOOH + 240. — RCCOOH + NH,

1

i .
In a general way these enzyme systems may be classified as follows:

(a) L-Amino acid oxidases (or dehydrogenases)

(b) p-Amino acid oxidases (or dehydrogenases)

(c) Specific amino acid oxidases (or dehydrogenases)

This classification indicates that the L- and p-amino acid oxidases have
broad substrate specificities, whereas the other enzymes have a narrower
specificity. For the purpose of simplicity the above classification will be
used. The amino acid oxidase systems may be subclassified according to
the nature of the hydrogen acceptor under two categories, aerobic and
anaerobic. The former have been more commonly referred to as amino
acid oxidases, whereas the lattér are frequently referred to as dehydro-
genases.

The term oxidase is usually considered to refer to a system in which
oxygen is an obligatory hydrogen acceptor. The term dehydrogenase is
‘used for that enzymic component of an oxidative reaction system which
is concerned with the activation of the substrate and its dehydrogenation.
Thus, the distinction between the succinoxidase system and succinic
dehydrogenase is clearly recognized under this terminology. In the case of
the amino acid oxidative enzymes, the distinction is somewhat more
difficult to establish, owing chiefly to the fact that most of the measure-
ments of activity have been based on oxygen consumption and thus it is
not certain in most instances that the rate-limiting reaction is the dehydro-
genase step. It is clear from the formulation of the mechanism of the oxida-
tion of amino acids and amines that the primary reaction is that of a
dehydrogenation and that the ultimate fate of the hydrogen (or electrons)
is determined either by the autoxidizability of the primary acceptor, i.e.,
coenzyme, or by its participation in the chain of hydrogen or electron
transport systems of the cell. The term oxidase will be retained in referring
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to most of the amino acid oxidizing enzyme systems because of precedent
and for the reasons given above. The term dehydrogenase will be included
parenthetlcally in those instances in which in the authors’ opinion the
term is preferable to the more commonly used term, oxidase. It is beyond
the scope of this discussion to reclassify and rename the many enzymes
mentioned. It should be clear to the reader, however, that there is a great
need for a more systematic basis for nomenclature.
Reaction (1) should be considered as a two-step reaction as follows:

RCHCOOH — RCCOOH + 2H

| L _ @
NHR, NR.

+H:0
RCCOOH —t22— RCOCOOH + NH:R
“ = + NH:R, - ®

NR,

&

Thus; the primary oxidative step is a dehydrogenatlon (and thus the term
dehydrogenase is preferable) to form an imino acid which in turn is non-
enzymically hydrolyzed to form the keto acid and ammonia or a derivative
thereof. In the formulation of reactions (2) and (3), Ri is intended to
represent either a hydrogen atom or a substituent, such as an alkyl group.
If R, is a hydrogen atom, ammonia is formed; if R, is an alkyl group, an
alkyl amine is formed.

The aerobic oxidases, as far as they have been investigated, are all
flavoproteins, and the hydrogen acceptor for this group is molecular
oxygen. The nature of the oxidative steps followmg reaction (2) may be
~ represented as follows:

Qk o—0 H.CQK o,

R

| H
N N
H,C Y o=0 o, C=0
O I + HO, (5)

NAc/ \ 4

T

o
The net effect of reactions (4) and (5) is:
2H + 0; — H:0: (6)
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Thus, the aerobic oxidases form hydrogen peroxide. In the absence of
catalase, the peroxide formed may react with the keto acid as follows:

RCOCOOH + H,0; —» RCOOH + CO, + H,0 )

The over-all formulation of amino acid oxidation by an aerobic oxidase
in the absence of catalase is as follows:

RCHCOOH 4 O, — RCOOH + NH,R, + CO,
HR,

In the presence of catalase. which decomposes the hydrogen peroxide,
the over-all reaction is:

R(IDHCOOH + 3%0. — RCOCOOH + NH:R:
NHR,

®

@

‘Keilin and Hartree (4) demonstrated the coupling of p-amino acid
oxidase with ethyl alcohol in the presence of catalase and were able to
show that in the presence of catalase ethyl alcohol was oxidized in prefer-
ence to the a-keto acid to form acetaldehyde as follows:

CH,CH,0H + H,0, —2®B%, CH,CHO + 2H,0 (10)
The total coupled system is thus formulated as follows:
RCHCOOH + 0; + CH;CH;OH — RCOCOOH +

XHE, ay
) NH;R, + CH,CHO + H,0
and exhibits the theoretical oxygen uptake without destruction of the
a-keto acid.

As indicated above, the reaction catalyzed by the general p- and L-
amino acid oxidases has been represented by a dehydrogenation of an
amino acid by a flavoenzyme to yield reduced flavoenzyme and the corre-
sponding imino acid [reactions (2) + (4)]. Indirect support for the forma-
tion of the hypothetical imino acid has been provided by a number of
studies which exclude a,B-unsaturation in the course of the reaction. For
example, it has been shown that (a) the four isomers of isoleucine are
enzymically oxidized by the appropriate amino acid oxidase to the corre-
sponding optically active a-keto-8-methylvaleric acids (5, 6), (b) the L-
isomers of B-phenylserine are converted by L-amino acid oxidase to the
respective isomers of mandelic acid (?), (c) the L- and p-isomers of a-
aminophenylacetic acid, which have no g-hydrogen atom, are attacked by
the amino acid oxidases (8, 9), and (d) on the oxidation of L-leucine in the
presence of D,O by r-amino acid oxidase, no deuterium is found in the
isolated a-ketoisocaproic acid (10). More direct evidence for the formation
of the a-imino acid as an intermediate has been provided by Pitt (10a) in
studies on the oxidation of aromatic amino acids by ophio-L-amino ‘acid
oxidase in the presence of a tautomerase.
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Until recently, the amino acid oxidase reaction has been studied only
in the direction of ammonia and a-keto acid formation. In the presence of
air ‘the reaction proceeds to completion and is essentially irreversible
because of the reoxidation of the reduced flavoprotein by molecular oxygen
[reaction (5)]. Meister and his associates (11, 12) have provided a clear
demonstration of the reversibility of the amino acid oxidase reaction with
p-amino acid oxidase (from sheep kidney) and L-amino acid oxidase (from
snake venom). When an amino acid, ammonia, and the a-keto acid analog
of a second amino acid are incubated with either amino acid oxidase under
anaerobic conditions, the formation of the second amino acid is observed:

RCHCOOH + R/COCOOH = RCOCOOH + R'CHCOOH a2)
2 2
-The reaction is markedly accelerated by the addition of ammonia; N'*H,
leads to the formation of the N'5-labeled amino acid; and spectrophoto-
metric studies show that the reduced amino acid oxidase can be reoxidized
anaerobically by the addition of ammonia and a-keto acid. All of these
experiments indicate that the reaction observed does not involve a trans-
amination. It has been suggested that under appropriate physiological
conditions a reversal of the amino acid oxidase reaction may be responsible
for 'amino acid synthesis.
The anaerobic oxidases (dehydrogenases) represent enzymes which
have as coenzymes nonautoxidizable hydrogen acceptors and thus are
Jinked with the cytochrome system.

1. z-Amino Acid Oxidases (Dehydrogenases)

Four r-amino acid oxidases have been partially purified and studied
from such widely different sources as snake venom, rat kidney, turkey
liver, and molds.

a. SNAKE VENOM OR OPHIO-L-AMINO Acip OXIDASE (DEHYDROGENASE).
Zeller and Maritz (see 13) described an enzyme, originally discovered in
snake venoms and later shown to be present in various tissues of both
venomous and nonvenomous snakes, which they termed ophzo-L-amino
acid oxidase. The enzyme is widely distributed in a large number of snake
venoms (13). The L-amino acid oxidase from moccasin venom has been
highly purified and shown to be a homogeneous protein with a molecular
weight of 62,000 (Z4). It has a turnover number of 3100, a. Qo, of 68,400,
and a pH optimum at 7-7.5, with a sharp decline in activity on either
side (14). The prosthetic group has been shown to be flavin adenine dinu-
cleotide (FAD), which is present in a concentration of 1 mole per mole of
. protein (16).* '

* However, recent studies by Wellner and Meister [D. Wellner and A. Meister, J.

Biol. Chem. 285, 2013 (1960)] indicate a molecular weight of 130,000 and 2 moles of
FAD for crystalline L-amino acid oxidase from venom of Crotalus adamanteus.
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8 P. P, COHEN AND H. J. SALLACH

i. Specificity. Early specificity studies have been reviewed by Zeller
(13) and have been studied in greater detail by Bender and Krebs (16).
In Table I are listed the reactivities of different amino acids with the
different amino acid oxidases. In general, ophio-L-amino acid oxidases,
although showing variation in substrate specificity from one species to
another, are highly specific for L-amino acids. Zeller (13) has summarized
the specificity requirements as follows: “The substrate must possess a
free carboxyl group, an unsubstituted e-amino group, and an organic
radical. A second amino or carboxyl group inhibits a substance otherwise
suitable as a substrate for the enzyme.” If the second amino group is
acylated, or if the second carboxyl is converted to an amide or ester, how-
ever, oxidation occurs.

A number of amino acid analogs (8-arylalanines) (17) and derivatives
of o-L-aminodicarboxylic acids (8-aspartylalanine, B-aspartylglycine,
v-glutamylalanine, etc.) (18) are oxidized by snake venom L-amino acid
oxidases. The rates of oxidation of the g-arylalanines are comparable to
that of the corresponding naturally occurring amino acids, supporting the
generalization of Zeller (13) that the B-group exerts relatively little in-
fluence on the substrate activity of different amino acids. However, in
studies with «,B8-diasymmetric amino acids as substrates for ten different
ophio-L-amino acid oxidases, it was found that substrates with the a-L,
B-L configuration were more readily oxidized than were the corresponding
diastereoisomers (19, 20)..

ii. Mechanism of action. With. the clear demonstration by Singer and
Kearney (15) that FAD is the coenzyme of ophio-L-amino acid oxidase, the’
oxidative steps are those represented by reactions (2), (4), and (5). In the
absence of catalase, the over-all reaction is that shown by reaction (8); in
the presence of catalase, it is that shown by reaction (9). The reaction
proceeds more rapidly in pure oxygen than in air (14).

On the basis of pH activity data and reversible inactivation by phos-
phate and other ions, Kearney and Singer (2/-23) have suggested that
one of the active groups of the enzyme is an ionizable imidazole.

In his investigations of the mechanism of action of the flavoproteins,
Beinert (24) studied the spectral changes induced by enzymic or chemical
reduction and oxidation of FMN and FAD. Evidence has been obtained
for two intermediates, a semi-quinoid free radical, monomeric form, and a
dimeric (possibly quinhydrone-like) form of the free radical, which is
formed from the monomer in a relatively slow reaction. The semi-quinones
are formed rapidly enough to permit them to function kinetically as inter-
mediates. A reaction scheme has been proposed (24).

iii. Inhibitors. Zeller and co-workers (13, 25-29) have studied a variety
of carboxylic and sulfonic acids as possible inhibitors of ophio-L-amino



