Implementation
ﬁbﬁ“ﬁﬁ Patterns

[6] Kent Beck #

w‘%it

1.1 “KentZARERDEHKIN, KBRS EHT, A
i, WmAIRF, MR, SARAFE. 7

— Erich Gamma, IBM7SHIEIH

N\ BCHIBFR i gk

POSTS & TELECOM PRESS

*®

S IR AR 3T

S

(ZE3Chi)

[35] Kent Beck %

A B S HL HY B A
i ®

BHEEESRE (CIP) HiE

LMK, FL/ () NH (BeckK.) F. —IbLH:
ARHRE AR, 2008.11

(B R 558D

ISBN 978-7-115-18709-3

I. g [. M- I BEFERF—RIC V. TP311I
o [A P 548 CIP BB (2008) 3 129535 5

B H B

Original edition, entitled Implementation Patterns, 0780321413093 by Kent Beck, published by Pearson
Education, Inc, publishing as Addison-Wesley, Copyright © 2008 by Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD., and POSTS & TELECOMMUNICATIONS
PRESS Copyright © 2008.

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in People’s
Republic of China excluding Hong Kong, Macau and Taiwan.

RBRFREARKFNRRA (FEETEEE. RHHTRERTEAEEX) HE.

A& ${FEMGA Pearson Education (HIESE HIEME) MRS, TREETHHUE.

SRR 50
LIENX (TR
L [2] KentBeck
HAERE XK

o AROBH HRAHBRET DSrtRiRIRFH 145
BE4R 100061 BFEMH 315@ptpress.com.cn
M4k hitp:/www.ptpress.com.cn

LR L RENRE RA S R
& FFA: 700x1000 1/16
Bi: 10.75
F/: 219 FF 20084E 11 A% 1R
ENM: 1-3 5004 2008 4E 11 F3LHE 1 KA

ZHEPSAERS BF: 01200838455
ISBN 978-7-115-18709-3/TP
et 29.00 T

EERE AL (010)67132705 EPERMALE: (010)67129223
E#kE#sg: (010)67171154

ABRE

ELXBP, (EBIEE S SERABIRE RIS S L IBUAIRIRER 3 e
BUNMENR. ERNFD 77 ROSCHE R

8. BRRSEHMEMN M BFTETTRARHEIC. S0, B/VLES. 8
Eﬁ%&%ﬁiﬂ%ﬁﬂlu B REAMNESER, INENENEFHIZIZS, Em{EXDUﬁFD
RINZBERITHER. 7 77 TIUERD, §—TMEXNBEETHSES. AEW. S
. S4ErevttinxX—RUSE T 75, E{F]NEﬁBSﬁ&E{#?$§'ﬂH§QBS§%R€%,
{‘ HEIRAFIX LA BT IR BN F RS AR = IR R,

ADERTSTNRNFREIA, RIRGSRIRAFT R TREIHT A B85S AT
IRIERESHE, TRFEENNENSRL; MEEFSERNER TIRTN T EY
XEARTUHITRR, RIVNIDSLERASSOVE N o HBINMEL. RS SRE s> S, 5
BHR TR MRAFT XA R IMER B,

Praise for Implementation Patterns

“Kent is a master at creating code that communicates well, is easy to under-
stand, and is a pleasure to read. Every chapter of this book contains excellent
explanations and insights into the smaller but important decisions we continu-
ously have to make when creating quality code and classes.”

—Erich Gamma, IBM Distinguished Engineer

“Many teams have a master developer who makes a rapid stream of good deci-
sions all day long. Their code is easy to understand, quick to modify, and feels
safe and comfortable to work with. If you ask how they thought to write some-
thing the way they did, they always have a good reason. This book will help
you become the master developer on your team. The breadth and depth of top-
ics will engage veteran programmers, who will pick up new tricks and improve
on old habits, while the clarity makes it accessible to even novice developers.”
~—Russ Rufer, Silicon Valley Patterns Group

“Many people don’t realize how readable code can be and how valuable that
readability is. Kent has taught me so much, I'm glad this book gives everyone
the chance to learn from him.”

—Martin Fowler, chief scientist, ThoughtWorks

“Code should be worth reading, not just by the compiler, but by humans. Kent

Beck distilled his experience into a cohesive collection of implementation pat-

terns. These nuggets of advice will make your code truly worth reading.”
—Gregor Hobpe, author of Enterprise Integration Patterns

“In this book Kent Beck shows how writing clear and readable code follows
from the application of simple principles. Implementation Patterns will help
developers write intention revealing code that is both easy to understand and
flexible towards future extensions. A must read for developers who are serious
about their code.”

—Sven Gorts

“Implementation Patterns bridges the gap between design and coding. Beck
introduces a new way of thinking about programming by basing his discussion
on values and principles.”

—Diomidis Spinellis, author of Code Reading and Code Quality

To Cindee: Thank you for your encouragement, insistence, food,
soothing, irritation, editing, and tea. The dedication of a book is
as a raisin to an elephant compared to what you give me.
Bless you.

T

RR—ART M EHFREMNS.

WREANAEERBRE—HEE., FETHESNE, FrR FixAS,
fraRIFHANAT? FTLATAER . HERERIFE. TR bug AR, BEFEALREG 2
PTBEFIOAES, BR T HABBTE RS, N M ARt A 1k B Ve 3 pAR

Martin Fowler 7 (E#: BEEANBIBI) B, “4EA— MY EE HiL 5
REERIARE . FHREFRANZES HABENAR.”

MRGARRXE, EXIRTRES. BAXRE—ALT o ERBSMA (R
EHLER) WWIERBE. ’

TR BIX— TR RN %R seiX A,

Steve McConnell 7 (R R4) B, “FELEMA, BERETELL”, XAH
%%ﬁﬁ(ﬁﬂﬁfEﬂg?Z:%l)\Eﬁﬁﬁ?fﬁE*Bﬁﬁﬁ*ﬁ%—Fﬁ%ﬁgﬁﬂB@fﬁﬁ%&%ﬁ—ﬁ’m%
K, FALPEAN AR 3 LR i s iR,

WMRFRALBA R, BONZETE 6 & RE”. EHEEHE LHIEGEE R
BHERERRRKT “Mafs BREH A/ HREHEER.

XA FP = B UL RS20 2 0L 5.

BTEA, BEERRALIRIERtabe. MmABMiR.

RARF

—InfoQ 3 ¥G

RR—FXTHRERL, FRAK A, BXT “UMASIAREBHRE” K8, 5
HHAAREERREREEMETZL, IREEAMBERNEE—RE. TRERKS
&, ERTFERE - EWOBESEH, SN D RE AN TR, Java B40ET
— IR WALE, BN ARLIERE R —L Java HEESIME, SRS K
RIBE NS E.

WA BB EE—KEBE, “KXTXBRABE, REESREEHAL? ” BER
KERS I) #07E B SO R B LR BT, UZE T AR AR E R R A1k 138 8
—REKER, MOARNELE “HENLSHXBRRBMMA 47, TELR “0M X
BRBSHAWEROEE”. XFNA LOEREH TIROEE, BRTEERTRY
BE, EBAERGFRPERBOFETBEATERNAERELET.

H— AU Jeopardy IEEWRY H, hiEHFALHABNER, 530NN
BRH 4. “BE—MA, BRFIHES.” “R defenestration 1B? ” “£xtT.”

GRIZFLIFR Jeopardy HRR: B R Java MEARESTHIEL T, BFEANSEEERH
HEBRARRM 4, HXEESWENEREBRRM2AE. B, MEZRE “m—Ap
FEAEYN Set”, MAMBARAR “BREERSFEAMBERER, XE- I FAFGSE
HARNES? " ARNMBNLIARRFTIZE T —HE NHHEE, B85 Java #gux it

BT R .
' MRETTR—#, BEETENTERRARAEE. RAEREFRABARH4, TR
REERMEIEE, FHARPEE T AEBHMBE, BREANRE LA R, SRER
P, BARPRENEBERNERN. BFERSREMBRERNRE. EARELBE,
PN KESTIEAEREAHE EETE. CARESHE, FAIRERDKTT—
& Java B E R, ERESERBERKRCLSHE Java T.

LB EABRIE - MHURATENITRZ £ FHABREEEXN. BILEAZH
BRI ARBS ENREARE KBS E, FUEREXR, REERERVEIIRER S 4

1

2 EAMRX (EUK)

A, “FRRMER” ERALEEARTS . BEmL, ROBESE, REABRESER
EREFHIRK, EMRERENL: ATHRERFRMABLE, WEBREGHFERRS O
FERFZANT, AR 88 KAy m ME N HLBM 3ES, TF K HI A e ZE PhiR I
HEARFERERE. B2, HERERES. HREENAE, FHRBERTTE
WA PRk RIS

HEAEBRANSTRN, RIMARSEEIRITEMEE HFRL. REFEILH
2%, FR—EBRA 2P ME, XERMN AN ZBIRBESEE B T B
RIfEL. REFROABFARELSR, AMUBEAGRRES, R AERH AR ER.
fR¥ . RN REH T,

el RBE, XR—FAXRTHRENT. FA-NMEFR, RAEFHRE. #EAE.
REER. WAENS. NTRERBRLY, FEOFMATTHER? TANRBEEST
B FXAHBHER: AMUAREC. HRM CPU ZHHEE, HIHMARE.

mis

RE%. BEHHHLERE Cynthia Andres, RIS, &, THFANEE TR
Ro. RKAAA Paul Petralia #E3) TiIXABHIEHE, TERAHARBBIIIBEIE. @8 Chris
Guzikowski MIB WL FHEL T WAIE—RITE, A Pearson MAKESE TR —IIFEN
3CFE, LREEB TS 1E. BB BR W Pearson KIHIYERIBA : Julie Nahil, John Fuller f1 Cynthia
Kogut. Jennifer Kohnke M#FHENMEEE TEHMNEL, MAEFAHAL. XBRHFEES
AP RIR AL T W LA B R, A LR E B Erich Gamma, Steve Metsker. Diomidis
Spinellis, Tom deMarco. Michael Feathers. Doug Lea. Brad Abrams. Clff Click. Pekka
Abrahamson. Gregor Hohpe f! Michele Marchesi. /& David Saff i “R&” 5 “4TH”
Z R, &5, CEBBRNETFN, —HEAMMNERRERE, BRATRIRTK
AHHEh /. Lincoln. Lindsey. Forrest i Joélle Andres, [BitH#RA7.

Contents

Chapter 1: Introduction. ocviviieieiineeenenceasaansosnaasans 1
TourGuide .. . oo viiiii ittt ettt ittt ennannaeeann 3

ANAd NOW.... ittt i i ittt ettt ittt 4
Chapter 2: Patternsvveeveeeneecsocesserocosassosssssaacaans 5
Chapter 3: A Theory of Programming.c.coveuvevrencccanananns 9
Valtues. ..ottt e i i i e e e et e e, 10
Communicationc.iiniiininnneonnenoarannennns 10

Simplicity e et et eecteee et e 11

Flexibilityoiiiii it i i i i it eie e 12

Principles.o e e e 13

Local Consequencesovuviuneenenennannnnennnnnn. 13

Minimize Repetition......... ...ttt arnnaennn. 14

Logic and Data Together e e 14

SYMMeEtIy . .ottt ittt e i ettt ettt 15
Declarative EXpressionoeueeeeunernruennnenennns 16

Rateof Change.......coiiiiiiinniiiiiininnnnnnnnn. 17
Conclusionvuiiiii ittt i i i e et e e i 18
Chapter 4: MOtVAtON. « « oot vvteiinarseeesneronenscrosnssannanns 19
Chapter 5: Class ovvveinittnioreeneeeeoesoeesacnscncanannns 21
Class . vttt i e e e e it 22

Simple Superclass Nameciiiiiiiiinnnnnn... 23
Qualified Subclass Name.ot iiiniiinnnnn.. 24

CONTENTS

AbstractInterface oo 24
Interface 26
Abstract Class.ouenunnii i 26
VersionedInterface o i i, 27
Value Object.o, 28
Specialization i 31
Subclass. 32
Implementor i 34
InmerClass, 34
Instance-Specific Behavior.covuuron e, 36
Conditional. i i 36
Delegation.o.uuuiiiiie e 38
Pluggable Selectoroouuuiinn 40
AnonymousInner Classc.coouunuinnnnnnnn. .. 41
Library Class.coouii i 41
Conclusioncoouiiiiiiiii 42
Chapter 6: State.vuvinenneeneen et eeeee e, 43
SERLE 00555105 5 5.5 wmmmw e s 25 588 WS EE 855 e e o o o s 44
ACCESS - o vttt e 45
Direct ACCess.t 46
Indirect Access ..ottt 47
CommonState i, 47
Variable State i 48
ExtrinsicState........ 50
Variable 50
Local Variable. o oo 51
FIeld voe o it mmemmmmas o v e e m s ms 55 55 55 F s s © 52
Parameter 53
Collecting Parameter.ooouuunne o, 55
Optional Parameter. 56
WA LBl eoms o o g i BB EBEDARS 5 » » et G E P S 5 5 5 e 56
Parameter Object i 57
Constant. ... 58
Role-Suggesting Name 58
Declared Type. ..o 60
Initializationo 61

CONTENTS

LazyInitialization oo cv v iiiiieiiieiiiniieiinansnnnns 62
Conclusion coitiiiiiiiiii it ittt 62
Chapter 7: Behaviorcciivevvivnnnnnn. sEEES e aEe s s 63
Control FIow. . .. v ittt it ittt i it ia e 64
Main Flow .. .ivitin ittt i it et 64
MESSABE sz s s enmmpamnusss i sspsmunars s tnmseuessessses 65
Choosing MesSSage. « .o v oo vviniiiennreneeenennennnsnnnss 65
DoubleDispatchovvninniiii i iiiiiiiiiiiinrenenn 66
Decomposing (Sequencing) Message vviiiiiiiiinennnn 67
Reversing Messagecovtiiniiiiinnnnnneennnannnns 67
Inviting Messagé .. 68
Explaining Message. covvvvvertrenrncenseensnsnucnasnss 69
Exceptional FIOWcciuiiitiiiiiiiiniiennnneenns 70
Guard Clauseotiiiiiin i ittt 70
EXCEPUION: « c5 senmpsrrre s o8 sumuae s psrs s Sfrsimmpesssas o o 72
Checked EXCEPLiONS ... cvvvtvnnrneeneneeneacenenaenennn. 72
Exception Propagationccoutetiiiniiinnnnceennnnns 73
Conclusioncoutiiiiiiii i i it i e 73
Chapter 8: Methodsovvviiiniiiiiiineineeetineenanscnsnnens 75
ComposedMethodottt 77
Intention-Revealing Name.iiiiiiiiiinnennn, 79
Method Visibility ittt 80
Method Object . .o ovvve et et e e e 82
Overridden Method i, 83
Overloaded Methodot 83
Method Return Type. . oo vviiieineinneeonecanosanssnassns 84
Method Comment.cciitineiineineeenrsoecaonssnns 85
Helper Methodottt i i e e e 85
DebugPrint Method i, 86
COLVELSION v mmmanrve s s summmmmusssss o sabmmunnesssssss 87
Conversion Method GeNEEmE e s e s i 87
Conversion ConsStruCtor vviiiinniernnnneensnnneeeenns 88
Creation : i v suivmnoess isiiceBaooosnisssiisess@uneisssss 88
Complete CONStIUCIOr. .o v vt v evriienaronrornosenosnonsons 89
FactoryMethod ittt iiiiiiiiiiniinnnnns 90

Intefiial FAGtORy. v unus s s s supnamunsisss shaEmEaauars & & % o5 91

CONTENTS

Collection Accessor Methodooveuunnnnnnnn .. 91
Boolean Setting Method 93
QueryMethod 93
Equality Methodo, 94
GettingMethod. 95
SettingMethod i 96
SRR COPY « ogmm w5 & 1 8 55 BE R Cmos s s o s s ¢oe 008 0 B E BB S S § 97
Conclusion ... i 98
Chapter 9: Collections. ..o .vvvevrenennteneeenenns e e, 99
Metaphors. i 100
L T 101
Interfaces. 103
ArTay .o 103
Ierable 104
Collection vvvi it e 104
LSt s e e @ P @S 5 B EEE B s s s s s s EEE SN EEAS F o o 104
R T TN T T T P S 105
SortedSet. 105
Map .. 106
Implementations oo 107
Collection.vviii i 108
T 108
- T 108
Map . e 109
Collectionsco. it 110
Searching 111
SOTUIE « v v s s s v et w08 H 8 ame e s e e s s m 8 6555 e 112
Unmodifiable Collections 113
Single-Element Collections 114
Empty Collections. v, 114
Extending Collectionsoovuvenno ... 114
Conclusiono o i 115
Chapter 10: Evolving Frameworksouuuvnunonnn... 117
Changing Frameworks without Changing Applications 117
Incompatible Upgrades 118

CONTENTS

Library Class.o oiii e 121

Objects . oot e 121
Conclusion it i i i e i 129
Appendix A: Performance Measurement...........ooveuernnnnnnnn. 131
Example o e 131

BEl . . cnnvcampes s g B DR NEEEE S EE S ERDE R o . o 132
Implementation.cuuuuinnineii i, 133
MethodTimeroiiiiiiiii i, 134
Canceling Overhead e e e e, 136

Tests . oo e e 136
Comparing Collectionsoiiitii .. 137
Comparing ArrayList and LinkedList 139
Comparing Sets. . .. oottt i e 140
ComparingMapsoiiiiinii i, 141
Conclusionooiuii i i e 142
Bibliographyttt i e e 145
General Programmingouiiniinnennnnnnnnn.. 145
PHIIGSOPEY s mwmmss 5555 6058550 aneon e ommmmmmonrsssssssas 147

JAVA. e 148

Chapter 1

Introduction

Here we are together. You’ve picked up my book (it’s yours now). You already
write code. You have probably already developed a style of your own through
your own experiences.

The goal of this boak is to help you communicate your intentions through
your code. The book begins with an overview of programming and patterns
(chapters 2-4). The remainder of the book (chapters 5-8) is a series of short
essays, patterns, on how to use the features of Java to write readable code. It
closes with a chapter on how to modify the advice here if you are writing
frameworks instead of applications. Throughout, the book is focused on
programming techniques that enhance communication.

There are several steps to communicating through code. First I had to
become conscious while programming. I had been programming for years when
I first started writing implementation patterns. I was astonished to discover
that, even though programming decisions came smoothly and quickly to me, I
couldn’t explain why I was so sure a method should be called such-and-so or
that a bit of logic belonged in this object over here. The first step towards
communicating was slowing down long enough to become aware of what I was
thinking, to stop pretending that I coded by instinct.

The second step was acknowledging the importance of other people. I found
programming satisfying, but I am self-centered. Before I could write
communicative code I needed to believe that other people were as important as
I was. Programming is hardly ever a solitary communion between one man and
one machine. Caring about other people is a conscious decision, and one that
requires practice.

Which brings me to the third step. Once I had exposed my thinking to
sunlight and fresh air and acknowledged that other people had as much right to
exist as I did, I needed to demonstrate my new perspective in practice. I use the
implementation patterns here to program consciously and for others as well as
myself.

CHAPTER 1 INTRODUCTION

You can read this book strictly for technical content—useful tricks with
explanations. However, I thought it fair to warn you that there is a whole lot
more going on, at least for me.

You can find those technical bits by thumbing through the patterns chapters.
One effective strategy for learning this material is to read it just before you need
to use it. To read it “just-in-time”, I suggest skipping right to chapter 5 and
skimming through to the end, then keeping the book by you as you program.
After you’ve used many of the patterns, you can come back to the introductory
material for the philosophical background behind the ideas you’ve been using.

If you are interested in a thorough understanding of the material here, you
can read straight through from the beginning. Unlike most of my books,
however, the chapters here are quite long, so it will take concentration on your
part to read end-to-end.

Most of the material in this book is organized as patterns. Most decisions in
programming are similar to decisions that have come before. You might name a
million variables in your programming career. You don’t come up with a
completely novel approach to naming each variable. The general constraints on
naming are always the same: you need to convey the purpose, type, and lifetime
of the variable to readers, you need to pick a name that’s easy to read, you need
to pick a name that’s easy to write and format. Add to these general constraints
the specifics of a particular variable and you come up with a workable name.
Naming variables is an example of a pattern: the decision and its constraints
repeat even though you might create a different name each time.

I think patterns often need different presentations. Sometimes an
argumentative essay best explains a pattern, sometimes a diagram, sometimes a
teaching story, sometimes an example. Rather than cram each pattern’s
description into a rigid format, I have described each in the way I thought best.

This book contains 77 explicitly named patterns, each covering some aspect
of writing readable code. In addition, there are many smaller patterns or
variants of patterns that I mention in passing. My goal with this book is to offer
advice for how to approach most common, daily coding tasks so as to help
future readers understand what the code is supposed to do.

This book fits somewhere between Design Patterns and a Java language
manual. Design Patterns talks about decisions you might make a few times a
day while developing, typically decisions that regulate the interaction between
objects. You apply an implementation pattern every few seconds while
programming. While language manuals are good at describing what you can do
with Java, they don’t talk much about why you would use a certain construct or
what someone reading your code is likely to conclude from it.

Tour GuIDE

Part of my philosophy in writing this book has been to stick to topics I know
well. Concurrency issues, for example, are not addressed in these
implementation patterns, not because concurrency isn’t an important issue, but
rather because it is not one on which I have a lot to say. My concurrency
strategy has always been to isolate as much as possible concurrent parts of my
applications. While I am generally successful in doing so, it’s not something I
can explain. I recommend a book such as Java Concurrency in Practice for a
practical look at concurrency.

Another topic not addressed in this book is any notion of software process.
The advice about communicating through code here is intended to work
whether that code is written near the end of a long cycle or seconds after a
failing test has been written. Software that costs less overall is good to have,
whatever the sociological trappings within which it is written.

I also stop short of the edges of Java. I tend to be conservative in my
technology choices because I have been burned too often pushing new features
to their limits (it’s a fine learning strategy but too risky for most development).
So, yow’ll find here a pedestrian subset of Java. If you are motivated to use the
latest features of Java, you can learn them from other sources.

Tour Guide

The book is divided into seven major sections as seen in Figure 1.1. Here they
are:

* Introduction—these short chapters describe the importance and value of
communicating through code and the philosophy behind patterns.

* Class—patterns describing how and why you might create classes and how
classes encode logic.

* State—patterns for storing and retrieving state.
* Behavior—patterns for representing logic, especially alternative paths.

* Method—patterns for writing methods, reminding you what readers are
likely to conclude from your choice of method decomposition and names.

* Collections—patterns for choosing and using collections.

* Evolving Frameworks—variations on the preceding patterns when building
frameworks instead of applications.

