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Preface to the First Edition

The purpose of this two-volume textbook is to provide students of engineering,
science and applied mathematics with the specific techniques, and the framework
to develop skill in using them, that have proven effective in the various branches
of computational fluid dynamics (CFD). Volume 1 describes both fundamental
and general techniques that are relevant to all branches of fluid flow. Volume 2
provides specific techniques, applicable to the different categories of engineering
flow behaviour, many of which are also appropriate to convective heat transfer.

An underlying theme of the text is that the competing formulations which are
suitable for computational fluid dynamics, e.g. the finite difference, finite ele-
ment, finite volume and spectral methods, are closely related and can be inter-
preted as part of a unified structure. Classroom experience indicates that this ap-
proach assists, considerably, the student in acquiring a deeper understanding of
the strengths and weaknesses of the alternative computational methods.

Through the provision of 24 computer programs and associated examples and
problems, the present text is also suitable for established research workers and
practitioners who wish to acquire computational skills without the benefit of for-
mal instruction. The text includes the most up-to-date techniques and is sup-
ported by more than 300 figures and 500 references.

For the conventional student the contents of Vol. 1 are suitable for introduc-
tory CFD courses at the final-year undergraduate or beginning graduate level. The
contents of Vol. 2 are applicable to specialised graduate courses in the engineering
CFD area. For the established research worker and practitioner it is reccommended
that Vol. 1 is read and the problems systematically solved before the individual’s
CFD project is started, if possible. The contents of Vol. 2 are of greater value after
the individual has gained some CFD experience with his own project.

It is assumed that the reader is familiar with basic computational processes
such as the solution of systems of linear algebraic equations, non-linear equations
and ordinary differential equations. Such material is provided by Dahlquist,
Bjorck and Anderson in Numerical Methods; by Forsythe, Malcolm and Moler
in Computer Methods Jor Mathematical Computation; and by Carnaghan,
Luther and Wilkes in Applied Numerical Analysis. Tt is also assumed that the
reader has some knowledge of fluid dynamics. Such knowledge can be obtained
from Fluid Mechanics by Streeter and Wylie; from An Indroduction of Fluid Dy-
namics by Batchelor; or from Incompressible Fiow by Panton, amongst others.

Computer programs are provided in the present text for guidance and to make
it easier for the reader to write his own programs, either by using equivalent con-
structions, or by modifying the programs provided. In the sense that the CFD
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practitioner is as likely to inherit an existing code as to write his own from scratch,

- some practice in modifying existing, but simple, programs is desirable. An IBM-

compatible floppy disk containing the computer programs may be obtained from
the author.

The contents of Vol.. 1 are arranged in the following way. Chapter 1 contains
an introduction to computational fluid dynamics, designed to give the reader an
appreciation of why CFD is so important, the sort of problems it is capable of
solving and an overview of how CFD is implemented. The equations governing
fluid flow are usually expressed as partial differential equations. Chapter 2 de-
scribes the different classes of partial differential equations and appropriate
boundary conditions and briefly reviews traditional methods of solution.

Obtaining computational solutions consists of two stages: the reduction of the
partial differential equations to algebraic equations and the solution of the
algebraic equations. The first stage, called discretisation, is examined in Chap. 3
with special emphasis on the accuracy. Chapter 4 provides sufficient theoretical
background to ensure that computational solutions can be related properly to the
usually unknown “exact” solution. Weighted residual methods are introduced in
Chap. 5 as a vehicle for investigating and comparing the finite element, finite
volume and spectral methods as alternative means of discretisation. Specific tech-
niques to solve the algebraic equations resulting from discretisation are described
in Chap. 6. Chapters 3—6 provide essential background information.

The one-dimensional diffusion equation, considered in Chap. 7, provides the
simplest model for highly dissipative fluid flows. This equation is used to contrast
explicit and implicit methods and to discuss the computational representation of
derivative boundary conditions. If two or more spatial dimensions are present,
splitting techniques are usually required to obtain computational solutions effi-
ciently. Splitting techniques are described in Chap. 8. Convective (or advective)
aspects of fluid flow, and their effective computational prediction, are examined
in Chap. 9. The convective terms are usually nonlinear. The additional difficulties
that this introduces are considered in Chap. 10. The general techniques, developed
in Chaps. 7—10, are utilised in constructing specific techniques for the different
categories of flow behaviour, as is demonstrated in Chaps. 14—18 of Vol. 2.

In preparing this textbook I have beén assisted by many people. In particular
I would like to thank Dr. K. Srinivas, Nam-Hyo Cho and Zili Zhu for having read
the text and made many helpful suggestions. I am grateful to June Jeffery for pro-
ducing illustrations of a very high standard. Special thanks are due to Susan Gon-
zales, Lyn Kennedy, Marichu Agudo and Shane Gorton for typing the manuscript
and revisions with commendable accuracy, speed and equilibrium while coping
with both an arbitrary author and recalcitrant word processors.

It is a pleasure to acknowledge the thoughtful assistance and professional
competence provided by Professor W. Beiglbdck, Ms. Christine Pendl, Mr. R.
Michels and colleagues at Springer-Verlag in the production of this textbook.

Finally I express deep gratitude to my wife, Mary, who has been unfailingly sup- -

portive while accepting the role of book-widow with her customary good grace.

Sydney, October 1987 C. A. J. Fletcher
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Preface to the Second Edition

The purpose and organisation of this book are described in the preface to the first
edition (1988). In preparing this edition minor changes have been made, par-
ticularly to Chap. 1 to keep it reasonably current. However, the rest of the book
has required only minor modification to clarify the presentation and to modify
or replace individual problems to make them more effective. The answers to the
problems are available in Solutions Manual for Computational Techniques for
Fluid Dynamics by C. A. J. Fletcher and K. Srinivas, published by Springer-Verlag,
Heidelberg, 1991. The computer programs have also been reviewed and tidied up.
These are available on an IBM-compatible floppy disc direct from the author.

I would like to take this opportunity to thank the many readers for their usually
generous comments about the first edition and particularly those readers who
went to the trouble of drawing specific errors to my attention. In this revised edi-
tion considerable effort has been made to remove a number of minor errors that
had found their way into the original. I express the hope that no errors remain
but welcome communication that will help me improve future editions.

In preparing this revised edition I have received considerable help from Dr. K.
Srinivas, Nam-Hyo Cho, Zili Zhu and Susan Gonzales at the University of Sydney
and from Professor W. Beiglbock and his colleagues at Springer-Verlag. I am very
grateful to all of them.

Sydney, November 1990 C. A. J. Fletcher




1. Computational Fluid Dynamics: An Introduction

This chapter provides an overview of computational fluid dynamics (CFD) with
emphasis on its cost-effectiveness in design. Some representative applications are
described to indicate what CFD is capable of. The typical structure of the equations
governing fluid dynamics is highlighted and the way in which these equations are
converted into computer-executable algorithms is illustrated. Finally attention is
drawn to some of the important sources of further information.

1.1 Advantages of Computational Fluid Dynamics

The establishment of the science of fluid dynamics and the practical application of
that science has been under way since the time of Newton. The theoretical devel-
opment of fluid dynamics focuses on the construction and solution of the governing
equations for the different categories of fluid dynamics and the study of various
approximations to those equations.

The governing equations for Newtonian fluid dynamics, the unsteady Navier-
Stokes equations, have been known for 150 years or more. However, the devel-
opment of'‘reduced forms of these equations (Chap. 16) is still an active area of
research as is the turbulent closure problem for the Reynolds-averaged Navier-
Stokes equations (Sect. 11.5.2). For non-Newtonian fluid dynamics, chemically
reacting flows and two-phase flows the theoretical development is at a less advanced
stage.

Experimental fluid dynamics has played an important role in validating and
delineating the limits of the various approximations to the governing equations. The
wind tunnel, as a piece of experimental equipment, provides an effective means of
simulating real flows. Traditionally this has provided a cost-effective alternative to
full-scale measurement. In the design of equipment that depends critically on the
flow behaviour, e.g. aircraft design, full-scale measurement as part of the design
process is economically unavailable.

The steady improvement in the speed of computers and the memory size since
the 1950s has led to the emergence of computational fluid dynamics (CFD). This
branch of fluid dynamics complements experimental and theoretical fluid dynamics
by providing an alternative cost-effective means of simulating real flows. As such it
offers the means of testing theoretical advances for conditions unavailable exper-
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2 1. Computational Fluid Dynamics: An Introduction

imentally. For example wind tunnel experiments are limited to a certain range of
Reynolds numbers, typically one or two orders of magnitude less than full scale.

Computational fluid dynamics also provides the convenicnce of being able to
switch off specific terms in the governing equations. This permits the testing of
theoretical models and, inverting the connection, suggests new paths for theoretical
exploration.

The development of more efficient computers has generated the interest in CFD
and, in turn, this has produced a dramatic improvement in the efficiency of the
computational techniques. Consequently CFD is now the preferred means of
testing alternative designs in many branches of the aircraft, flow machinery and, to
a lesser extent, automobile industries.

Following Chapman et al. (1975), Chapman (1979, 1981), Green (1982), Rubbert
(1986) and Jameson (1989) CFD provides five major advantages compared with
experimental fluid dynamics:

(i) Lead time in dcsign and development is significantly reduced.
(ii) CFD can simulate flow conditions not reproducible in experimental model
tests.
(iii) CFD provides more detailed and comprehensive information._
(iv) CFD is increasingly more cost-effective than wind-tunnel testing.
(v) CFD produces a lower energy consumption.

Traditionally, large lead times have been caused by the necessary sequence of
design, model construction, wind-tunnel testing and redesign. Model construction
is often the slowest component. Using a well-developed CFD code allows al-
ternative designs (different geometric configurations) to be run over a range of
parameter values, e.g. Reynolds number, Mach number, flow orientation. Ezfch
case may-require 15 min runs on a supercomputer, e.g. CRAY Y-MP. The design
optimisation process is-essentially limited by the ability of the designer to absorb
and assess the computational results. In practice CFD is very effective in the early
climination of competing design configurations. Final design choices are still
confirmed by wind-tunnel testing.

Rubbert (1986) draws attention to the speed with which CFD can be used to
redesign minor components, if the CFD packages have been thoroughly validated.
Rubbert cites the example of the redesign of the external contour of the Boeing 757
cab to accommodate the same cockpit components as the Bocing 767 to minimise
pilot conversion time. Rubbert indicates that CFD provided the external shape
which was incorporated into the production schedule before any wind-tunnel
verification was undertaken.

Wind-tunnel testing is typically limited in the Reynolds number it can achieve,
usually short of full scale. Very high temperatures associated with coupled heat
transfer fluid flow problems are beyond the scope of many experimental facilities.
This is particularly true of combustion problems where the changing chemical
composition adds another level of complexity. Some categories of unsteady ﬂoyv
motion cannot be properly modelled experimentally, particularly where geometric
unsteadiness occurs as in certain categories of biological fluid dynamics. Many
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geophysical fluid dynamic problems are too big or too remote in space or time to
simulate experimentally. Thus oil reservoir flows are generally. inaccessible to
detailed experimental measurement. Problems of astrophysical fluid dynamics are
too remote spatially and weather patterns must be predicted before they occur. All
of these categories of fluid motion are amenable to the computational approach.

Experimental facilities, such as wind tunnels, are very effective for obtaining
global information, such as the complete lift and drag on a body and the surface
pressure distributions at key locations. However, to obtain detailed velocity and
pressure distributions throughout the region surrounding a body would be pro-
hibitively expensive and very time consuming. CFD provides this detailed in-
formation at no additional cost and consequently permits a more precise under-
standing of the flow processes to be obtained.

Perhaps the most important reason for the growth of CFD is that for much
mainstream flow simulation, CFD is significantly cheaper than wind-tunnel testing
and will become ecven more so in the future. Improvements in computer hardware
performance have occurred hand in hand with a decreasing hardware cost.
Consequently for a given numerical algorithm and flow problem the relative cost of
a computational simulation has decreased significantly historically (Fig. 1.1). Par-
alleling the improvement in computer hardware has been the improvement in the
efliciency of computational algorithms for a given problem. Current improvements
in hardware cost and computational algorithm efficiency show no obvious sign of
reaching a limit. Consequently these two factors combine to make CFD increas-
ingly cost-effective. In contrast the cost of performing experiments continues to
increase.

The improvement in computer hardware and numerical algorithms has also
brought about a reduction in energy consumption to obtain computational flow
simulations. Conversely, the need to simulate more extreme physical conditions,
higher Reynolds number, higher Mach number, higher temperature, has brought
about an increase in energy consumption associated with experimental testing.

The chronological development of computers over the last thirty years has been
towards faster machines with larger memories. A modern supercomputer such as
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tll;es ;;R:{IY-I\EP is capable'o.f operatipg at more than 2000 Megaflops (Dongarra
More. 1‘e‘zenc:ga op 1s one million floating-point arithmetic operations per second.
o0 o supercomputers, ¢.g. the NEC §X3, are capable of theoretical speeds
( ( Megaflops. The speed comes partly from a short machine cycle time, that
is the time required for each cycle of logic operations. The CRAY Y-MP has a’cycle
time of 6 n_anosccond_s (6 x 107° 5) whereas the NEC SX3 has a cycle time of 2.9 ns
A specific operation, e.g. a floating point addition, can be broken up iI'IKO e;

number of logic. operations each one of which requires one machine cycle to
execute._ If the same operation, e.g. floating point addition, is to be applied
seq.uentlally' to a large number of elements in a vector, it is des}rable to treat Ic):ach
logic operation sequentially but to permit different logic operations associated with
each vector element to be executed concurrently. Thus there is a considerable
overla}p and a considerable speed-up in the overall execution time if the com-
putational algorithm can exploit such a pipeline arrangement.
foml\/;?dlcflr: ‘:upercomputers have special vector processors that utilise the pipeline
> 1 ever vector processors have an effective “start-up” time that makes

em slower than scalar processors for very short vectors. One can define a break-
:(\:':lx; l-w:.ctor length, Ny, for which the vector processor has the same speed as a
e izr::;is:‘(’):&.For very long vectors (N = c0) the theoretical vector processor

To compare the efficiency of different vector-processing computers it is (almost
wS/:::gflid pr:;lctxce to c:'onsxder Ny, (after Hockney and Jesshopepl981), whiih is the)
ol engt for which half the asymptotic peak vector processing performance

=00) is achieved. The actual N, /2 1s dependent on the specific operations being
performed as well as the hardware. For a SAXPY operation (S=AX +7)
Ny;;=37 for a CRAY X-MP and N,,, =238 for a CYBER 205. For most modern’
supercomputers, 30 < N,,, < 100.

’The speed-up due to vectorisation is quantifiable by considering Amdahl’s law
which can be expressed as (Gentzsch and Neves 1988)

G=[(1—P)+P/R]"" and R=V(N)/S (1.1)

where'G is the overall gain in speed of the process (overall speed-up ratio)
. V(N ) is the vector processor speed for an N component vector process
S is the scalar processor speed for a single component process
p is the proportion of the process that is vectorized and
Ris th_e vector processor speed-up ratio.
cpe 318. lis 1lr-1dtx.cat;d inFig.12a vector processor with a theoretical (N = c0) vector
heoc-s p ratio, R= 10, must achieve a high percentage vectorisation, say P> 0.75,
Thﬁs uci; 3 s1gp1ﬁcant overall speed-up ratio, G. But at this level 3G/dP> dG/dR.
b modification of the computer program to increase P will provide a much
1gger increase in G than modifying the hardware to increase ¥ and hence R. In
addition unless a large proportion of the computer program can be written so t.hat

vector lengths are significantly greater than N i i
ot b very o yg an N, ,, the overall speed-up ratio, G, will

Speed-Up Ratio, G
o
T

TR
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Fig. 1.2. Amdahl’s Law
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The ability to increase the overall execution speed to the limit set by the
hardware depends partly on the ability of the operating system and compiler to
vectorise the computational algorithm and partly on choosing computational
algorithms that are inherently vectorisable (Ortega and Voigt 1985). The struc-
turing of computational algorithms to permit vectorisation is an important
research topic but is beyond the scope of this book (see Gentzsch and Neves 1988).
The long term trend would appear to be towards making the operating system and
compiler take care of the vectorisation with less emphasis on the user having to
manipulate the basic algorithm.

With a pipeline architecture, an efficient vector instruction set and as small a
cycle time as possible the major means of further increasing the processing speed is
to introduce multiple processors operating in parallel. Supercomputers are typ-
ically being designed with up to sixteen processors in parallel. Theoretically this
should provide up to a factor of sixteen improvement in speed. Experiments by
Grassl and Schwarzmeier (1990) with an eight-processor CRAY Y-MP indicate
that 84% of the theoretical improvement can be achieved for a typical CFD code
such as ARC3D (Vol. 2, Sect. 18.4.1).

The concept of an array of processors each operating on an element of a vector
has been an important feature in the development of more efficient computer
architecture (Hockney and Jesshope 1981). The Illiac IV had 64 parallel processors
and achieved an overall processing speed comparable to the CRAY-1 and CYBER-
205 even though the cycle time was only 80 ns. However Amdahl’s law, (1.1), also
applies to parallel processors if R is replaced by Np, the number of parallel
processors, and P is the proportion of the process that is parallelisable. The relative
merits of pipeline and parallel processing are discussed in general terms by Levine
(1982), Ortega and Voigt (1985) and in more detail by Hockney and Jesshope (1981)
and Gentzsch and Neves (1988).

The development of bigger and cheaper memory modules is being driven by the
substantial commercial interest in data storage and manipulation. For CFD
applications it is important that the complete program, both instructions and
variable storage, should reside in main memory. This is because the speed of data
transfer from secondary (disc) storage to main memory is much slower than data
transfer rates between the main memory and the processing units. In the past the
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main memory size has typically limited the complexity of the CFD problems under
investigation.

The chronological trend of increasing memory capacity for supercomputers is
impressive. The CDC-7600 (1970 technology) had a capacity of 4 x 10° 64-bit
words. The CYBER-205 (1980 technology) has a capacity of 3 x 107 64-bit words
and the CRAY-2 (1990 technology) has a capacity of 10° 64-bit words.

Significant developments in minicomputers in the 1970s and microcomputers
in the 1980s have provided many alternative paths to cost-cflective CFD. The
relative cheapness of random access memory implies that large problems can be
handled efficiently on micro- and minicomputers. The primary difference between
microcomputers and mainframes is the significantly slower cycle time of a micro-
computer and the simpler, less efficient architecture. However the blurring of the
distinction between microcomputers and personal workstations, such as the SUN
Sparcstation, and the appearance of minisupercomputers has produced a
price/performance continuum (Gentzsch and Neves 1988).

The coupling of many, relatively low power, parallel processors is seen as a very
efficient way of solving complex CFD problems. Each processor can use fairly
standard microcomputer components; hence the potentially low cost. A typical
system, QCDPAX, is described by Hoshino (1989). This system has from 100 to
1000 processing units, each based on the L64132 floating point processor. Thus a
system of 400 processing units is expected to deliver about 2000 Megaflops when
operating on a representative CFD code.

To a certain cxtent the relative slowness of microcomputer-based systcms can
be compensated for by allowing longer running times. Although 15 mins on a
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Fig. 13. Computer speed and memory requirements for CFD (after Bailey, 1986; reprinted with
permission of Japan Society of Computational Fluid Dynamics)

1.2 Typical Practical Problems 7

Fig. 14. Surface pressure distribution on a typical military aircraft. Surfacc pressure contours,
4C,=002 (after Arlinger, 1986; reprinted with permission of Japan Society of Computational
Fluid Dynamics)

supercomputer appears o be the accepted norm (Bailey 1986) for routine design
work, running times of a few hours on a microcomputer may well be acceptable in
the research and development area. This has the advantage of allowing the CFD
research worker adequate time to interpret the results and to prepare additional
cases.

The future trends for computer speed and memory capacity are encouraging.
Predictions by Simon (1989) indicate that by 2000 one may expect sustained
computer speeds up to 10 Megaflops and main memory capacities of 50000
Megawords. This is expccted to be adequate (Fig. 1.3) for predictions of steady
viscous (turbulent) compressible flow around complete aircraft and to allow global
design optimisation to be considered seriously.

1.2 Typical Practical Problems

Computational fluid dynamics, particularly in engineering, is still at the stage'of
development where “problems involving complex geomctrics can be t.rcalcd.wxlh
simple physics and those involving simple geometry can be treated Yv_xth ‘C(.)mplex
physics” (Bailey 1986). What is changing is the accepted norm for simplicity and
complexity. Representative examples are provided below.

1.2.1 Corﬁplex Geometry, Simple Physics

The surface pressure distribution on a typical supersonic military aircraft is shown
in Fig. 1.4. The freestream Mach number is 1.8 and the angle of attack is 8°. The
aircraft consists of a fuselage, canopy, engine inlets, fin, main delta wing and
forward (canard) wings. In addition control surfaces at the trailing edge of thc': del?a
wing are deflected upwards 10°. Approximately 19000 grid points are required in
each cross-section plane at each downstream location. The complexity of the
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geometry places a considerable demand on the grid generating procedure. Arlinger
(1986) uses an algebraic grid generation technique based on transfinite inter-
polation (Sect. 13.3.4).

The flow is assumed inviscid and everywhere supersonic so that an explicit
marching scheme in the freestream direction can be employed. This is equivalent to
the procedure described in Sect. 14.2.4. The explicit marching scheme is par-
ticularly efficient with the complete flowfield requiring 15 minutes on a CRAY-1.
The finite volume method (Sect. 5.2) is used to discretise the governing equations.
Arlinger stresses that the key element in obtaining the results efficiently is the
versatile grid generation technique.

1.2.2 Simpler Geometry, More Complex Physics

The limiting particle paths on the upper surface of a three-dimensional wing for
increasing freestream Mach number, M, are shown in Fig. 1.5. The limiting
particle paths correspond to the surface oil-flow patterns that would be obtained
experimentally. The results shown in Fig. 1.5 come from computations (Holst et al.
1986) of the transonic viscous flow past a wing at 2° angle of attack, with an aspect
ratio of 3 and a chord Reynolds number of 8 x 106.

For these conditions a shock wave forms above the wing and interacts with the
upper surface boundary layer causing massive separation. The region of separation
changes and grows as M « increases. The influence of the flow past the wingtip
makes the separation pattern very three-dimensional. The terminology, spiral
node, etc., indicated in Fig. 1.5 is appropriate to the classification of three-
dimensional separation (Tobak and Peake 1982).

The solutions require a three-dimensional grid of approximately 170000 points
separated into four partially overlapping zones. The two zones immediately above
und below the wing have a fine grid in the normal direction to accurately predict

Stokes equations (Chap. 16). In the two zones away from the wing the flow is
nssumed inviscid and governed by the Euler equations (Sect. 11.6.1).

The grid point solutions in all zones are solved by marching a pseudo-transient
form (Sect. 6.4) of the governing equations in time until the solution no longer
changes. To do this an implicit procedure is used similar to that described in
Sect. 14.2.8. The zones are connected by locally interpolating the overlap region,
typically two cells. Holst indicates that stable solutions are obtained even though
severe gradients cross zonal boundaries.

By including viscous effects the current problem incorporates significantly more
vomplicated flow behaviour, and requires a more sophisticated computational
algorithm, than the problem considered in Sect. 1.2.1. However, the shape of the
vomputational domain is considerably simpler. In addition the computational grid

is generated on a zonal basis which provides better control over the grid point
\owations.
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1.2.3 Simple Geometry, Complex Physics ' r

To illustrate this category a meteorological e);amplctlfb)u(s);tihzn;tf;: ;p;x;szrr:
ineeri le. Figure 1.6 shows a four-day forecas .

gmeermegde:vzilt?pmeasugrcments (a). This particular weather pattern was ass;cxate(:

anlllpal' vere storm on January 29, 1990 which caused su?s}antxal property amt:ixlgr

i‘: tth: ss;uthem part of England. The computations predict the developing weathe

pattern quite closely.



~

10 1. Computational Fluid Dynamics: An Introduction
; U0 \\
\
Y- 18, N
— A A
/”I - i
&t et 1078 & > 22NN + 3
L ~ 3 1
N\, . L 6 - - )
] \ 9| .
P I X
4 Z /) = dy
NG w2 On Ly
1 " 4 y ¥4
A\l ”,
i \ (L] LR !
PO TRY ALY
. — -~ X ' -
i .
N toa N _I’ £ & > 3 /
VI ) o N __/:, S o) o . y
H | tone . ~—-- " N
3 X BN
-3 N\, *
D 3 Y
Ay '. ‘:-. ".,’ o1 s . z é'/-" @‘/
A - Hio38 -0
§ . (L)
N\,
A ol
1]
(@)
1028
lons —
1982
W ®
~ o,
9! ' &
2
3 A8, 02] 5 S ; ) GO, €
1org
[
7 b
S bles itk
036,
(L} A
1000
012
A H102 b
[0 "
\,
% * o e O\
& £2F 8008
Q
"
129 %
) /
are 02

Fig. 1.6a, b. Surface pressure comparison. (a) Measurements; (b) Predictions (after Cullen, 1990;
reprinted with permission of the Meteorological Office, U.K.)
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The governing equations (Cullen 1983) are essentially inviscid but account for
wind, temperature, pressure, humidity, surface stresses over land and sea, heating
effect, precipitation and other effects (Haltiner and Williams 1980). The equations
are typically written in spherical polar coordinates parallel to the earth’s surface
and in a normalised pressure coordinate perpendicular to the earth’s surface.
Consequently difficulties associated with an irregular computational boundary and
grid generation are minimal.

Cullen (1990) indicates that the resuits shown in Fig. 1.6 were obtained on a
192 x 120 x 15 grid and used a split explicit finite difference scheme to advance the
solution in time. This permits the complete grid to be retained in main memory. 432
time steps are used for a 45 day forecast and require 20 minutes processing time on
a CYBER 205.

Cullen (1983) reports that the major problem in extending accurate large-scale
predictions beyond 3 to 4 days is obtaining initial data of sufficient quality. For
more refined local predictions further difficulties arise in preventing boundary
disturbances from contaminating the interior solution and in accurately repre-
senting the severe local gradients associated with fronts.

For global circulation modelling and particularly for long-term predictions the
spectral method (Sect. 5.6) is well suited to spherical polar geometry. Spectral
methods are generally more economical than finite difference or finite element
methods for comparable accuracy, at least for global predictions. The application
of spectral methods to weather forecasting is discussed briefly by Fletcher (1984)
and in greater detail by Bourke et al. (1977). Chervin (1989) provides a recent
indication of the capability of CFD for climate modelling.

The above examples are indicative of the current status of CFD. For the future
Bailey (1986) states that “more powerful computers with more memory capacity
are required to solve problems involving both complex geometries and complex
physics”. The growth in human expectations will probably keep this statement
current for a long time to come.

1.3 Equation Structure

A connecting feature of the categories of fluid dynamics considered in this book is
that the fluid can be interpreted as a continuous medium. As a result the behaviour
of the fluid can be described in terms of the velocity and thermodynamic properties
as continuous functions of time and space.

Application of the principles of conservation of mass, momentum and energy
produces systems of partial differential equations (Vol. 2, Chap. 11) for the velocity
and thermodynamic variables as functions of time and position. With boundary
and initial conditions appropriate to the given flow and type of partial differential
equation the mathematical description of the problem is established.

Many flow problems involve the developing interaction between convection
and diffusion. A simple example is indicated in Fig. 1.7, which shows the tem-
perature distribution of fluid in a pipe at different times. It is assumed that the fluid
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The temperature as a function of x and ¢ is governed by the equation

or T é°T

E%—ué;—aW:O for x; <x<xz and ¢>0. (1.2)

T(xy, t)=T(xg, t)=0 and (1.3)

T(x,0)=cosnx, —0.55x<0.5

=0, x<—~05 and x>05. 449

fgzu;ngn; (1.2—4) p.rovi'de a mathematical description of the problem. The term
=0 / 3:) | is the diffusion term and « is the thermal diffusivity. This term is
leftP(i)fnzl isesfor 1tlh::hspread gf the nonzero temperature both to the right and to the
i mall the spread is small. Computational technigues for deali i
equf[x‘tlllons containing such terms are dealt with in Chaps. 7 gnd 80r caling with
distribi ttitz)rltln geai:/ax is tilcbco(;l_;/ection term and is responsible for the temperature
g swept bodily to the right with the known veloci
: city u. The
gﬁz;tm;ntlof this term and the cpmplc_ate transport equation (1.2) are cons)ildered in
p-9. In more than one dimension convective and diffusive terms appear
assoqlated with each direction (Sect. 9.5). oP
. Since u is known, ('1.2) is linear in T. However, when solving for the velocity field
Is necessary to consider equations with nonlinear convective terms. A prototype
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for such a nonlinearity is given by Burgers’ equation (Sect. 10.1)

ou ou 0u

—tu——a—=0. L5

at ' ox  ox? (1.3)
The nonlinear convective term, udu/dx, permits very steep gradients in u to develop
if o is very small. Steep gradients require finer grids and the presence of the
nonlinearity often necessitates an additional level of iteration in the computational

algorithm.
Some flow and heat transfer problems are governed by Laplace’s equation,

o’ F0 0. (1.6)

ox? * ay?
This is the case for a flow which is inviscid, incompressible and irrotational. In that
case ¢ is the velocity potential (Sect. 11.3). Laplace’s equation is typical of the type
of equation that governs equilibrium or steady problems (Chap.6). Laplace’s
equation also has the special property of possessing simple exact solutions which
can be added together (superposed) since it is linear. These properties are exploited

in the techniques described in Sect. 14.1.
For many flow problems more than one dependent variable will be involved

and it is necessary to consider systems of equations. Thus one-dimensional un-
steady inviscid compressible flow is governed by (Sect. 10.2)

do dlou) _
PR =0, .(l.7a)
dow 0, 5
5 +ax(gu +p)=0, (1.7b)
0E @
—+—[u(p+E)]=0, (L.7¢)
ox

ot

where p is the pressure and E is the total energy per unit volume given by

E=L1+O.5 ou’ ,

*)1 —

(1.8)

and y is the ratio of specific heats. Although equations (1.7) are nonlinear the
structure is similar to (1.5) without the diffusive terms. The broad strategy of the
computational techniques developed for scalar equations will also be applicable to
systems of equations.

For flow problems where the average properties of the turbulence need to be
included the conceptual equation structure could be written as follows

ou du 0 [ Ou
el =)= 19
a i Tox <a5x) Sy )
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where “a” is now a function of the dependent variable u, and S is a source term
containing additional turbulent contributions. However, it should be made clear
(Sects. 11.4.2 and 11.5.2) that turbulent flows are at least two-dimensional and often
three-dimensional and that a system of equations is required to describe the flow.

1.4 Overview of Computational Fluid Dynamics

The total process of determining practical information about problems involving
fluid motion can be represented schematically as in Fig. 1.8.

The governing equations (Chap. 11) for flows of practical interest are usually so
complicated that an exact solution is unavailable and it is necessary to seekv a
computational solution. Computational techniques replace the governing partial
differential equations with systems of algebraic equations, so that a computer can

“be used to obtain the solution. This book will be concerned with the computational
techniques for obtaining and solving the systems of algebraic equations.

For local methods, like the finite difference, finite clement and finite volume
methods, the algebraic equations link together values of the dependent variable§ at
adjacent grid points. For this situation it is understood that a grid of discrete points
is distributed throughout the computational domain, in time and space. ansc—
quently one refers to the process of converting the continuous governing equations

FOR EACH ELEMENT OF FLUID :

Conservation of mass = Confinuity Equation
Newton's second law »{ Euler Equations }
of motion Navier-Stokes Equations
Conservation of energy => Energy Equation
Equation of state

Solve the equations
plus boundary conditions

Velocity Distribution:  u(x,%.z,t}, Y(x. %, Z,t), w(x,¥, .t}

Pressure . o opuyzt)
Density N : o plxuyat)
Temperature * i Tiunzt)

flow separation

flow rates

heot transfer

forces on bodies

(skin friction, drag, lift)
efficiencies

{turbine, diffuser)

Deduce flow behaviour :

Fig. 1.8, Overview of computational
fluid dynamics
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to a system of algebraic equations as discretisation (Chap. 3). For a global method,
like the spectral method, the dependent variables are replaced with amplitudes
associated with different frequencies, typically.

The algebraic equations produced by discretisation could arise as follows. A
typical finite difference representation of (1.2) would be

T}'+1~T3'+u(T;+1—T;—1)= UT)- 1 =277+ T544)
4t 24x sz ’

(1.10)

where x=j4x and t=n4t.
If the solution is known at all grid points x; at time level n, (1.10) can be used to

provide an algorithm for T3, ie.

udt adt
T7“=T7—<2—j;)(77+1—T}'-;)+<Z—F)(T}‘_,-2T}‘+T3‘+l). (1.11)

Repeated use of (1.11) generates the solution at all interior grid points, x;, at time
level n+ 1. Incrementing n and substituting the values 7"*! into the right-hand
side of (1.11) allows the discrete solution to be marched forward in time.

For a local method, e.g. the finite difference method, the required number of
grid points for an accurate solution typically depends on the dimensionality, the
geometric complexity and severity of the gradients of the dependent variables. For
the flow about a complete aircraft a grid of ten million points might be required. At
each grid point each dependent variable and certain auxiliary variables must be
stored. For turbulent compressible three-dimensional flow this may require any-
where between five and thirty dependent variables per grid point. For efficient
computation all of these variables must be stored in main memory.

Since the governing equations for most classes of fluid dynamics are nonlinear
the computational solution usually proceeds iteratively. That is, the solution for
each dependent variable at each grid point is sequentially corrected using the
discretised equations. The iterative process is often equivalent to advancing the
solution over a small time step (Chap. 6). The number of iterations or time steps
might vary from a few hundred to several thousand.

The discretisation process introduces an error that can be reduced, in principle, -
by refining the grid as long as the discrete equations, e.g. (1.10), are faithful rep-
resentations of the governing cquations (Sect. 4.2). If the numerical algorithm that
performs the iteration or advances in time is also stable (Sect.4.3), then the
computational solution can be made arbitrarily close to the true solution of the
governing equations, by refining the grid, if sufficient computer resources are
available. ‘ ‘

Although the solution is often sought in terms of discrete nodal values some
methods, e.g., the finite element and spectral methods, do explicitly introduce a
continuous representation for the computational solution. Where the underlying
physical problem is smooth such methods often provide greater accuracy per
unknown in the discretised equations. Such methods are discussed briefly in
Chap. 5.
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1.5 Further Reading

The purpose of the present text is to provide an introduction to the computational
techniques that are appropriate for solving flow problems. More specific infor-
mation is available in other books, review articles, journal articles and conference
proceedings.

Richtmyer and Morton (1967) construct a general theoretical framework for
analysing computational techniques relevant to fluid dynamics and discuss specific
finite difference techniques for inviscid compressible flow. Roache (1976) examines
viscous separated flow for both incompressible and compressible conditions but
concentrates on finite difference techniques. More recently, Peyret and Taylor
(1983) have considered computational techniques for the various branches of fluid
dynamics with more emphasis on finite difference and spectral methods. Holt
(1984) describes very powerful techniques for boundary layer flow and inviscid
compressible flow. Book (1981) considers finite difference techniques for both
engineering and geophysical fluid dynamics where the diffusive mechanisms are
absent or very small.

Thomasset (1981), Baker (1983) and Glowinski (1984) examine computational
techniques based on the finite element method and Fletcher (1984) provides
techniques for the finite element and spectral methods. Canuto et al. (1987) analyse
computational techniques based on spectral methods. Haltiner and Williams
(1980) discuss computational techniques for geophysical fluid dynamics.

The review articles by Chapman (1975, 1979, 1981), Green (1982), Krause
(1985), Kutler (1985) and Jameson (1989) indicate what enginecring CFD is
currently capable of and what will be possible in the future. These articles have a
strong aeronautical leaning. A more general review is provided by Turkel (1982).
Cullen (1983) and Chervin (1989) review the current status of meteorological CFD.
Review papers on specific branches of computational fluid dynamics appear in
Annual Reviews of Fluid Dynamics, in the lecture series of the von Karman
Institute and in the monograph series of Pineridge Press. More advanced com-
putational techniques which exploit vector and parallel computers will not be
covered in this book. However Ortega and Voigt (1985) and Gentzsch and Neves
(1988) provide a comprehensive survey of this area.

Relevant journal articles appear in AIAA Journal, Journal of Computational
Physics, International Journal of Numerical Methods in Fluids, Computer
Methods in Applied Mechanics and Engineering, Computers and Fluids, Applied
Mathematical Modelling, Communications in Applied Numerical Methods, The-
oretical and Computational Fluid Dynamics, Numerical Heat Transfer, Journal of
Applied Mechanics and Journal of Fluids Engineering. Important conferences are
the International Conference series on Numerical Methods in Fluid Dynamics,
International Symposium series on Computational Fluid Dynamics, the AIAA
CFD conference series, the GAMM conference series, Finite Elements in Flow
Problems conference series, the Numerical Methods in Laminar and Turbulent
Flow conference series and many other specialist conferences.

2. Partial Differential Equations

In this chapter, procedures will be developed for classifying partial differential
equations as elliptic, parabolic or hyperbolic. The different types of partial
differential equations will be examined from both a mathematical and a physical
viewpoint to indicate their key features and the flow categories for which they occur.

The governing equations for fluid dynamics (Vol. 2, Chap. 11) are partial
differential equations containing first and second derivatives in the spatial co-
ordinates and first derivatives only in time. The time derivatives appear linearly but
the spatial derivatives often appear nonlinearly. Also, except for the special case of
potential flow, systems of governing equations occur rather than a single equation.

2.1 Background

For linear partial differential equations of second-order in two independent
variables a simple classification (Garabedian 1964, p. 57) is possible. Thus for the
partial differential equation (PDE)
%u d%u 2*u ou _ou
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where A to G are constant cocfficients, three categories of partial differential
equation can be distinguished. These are

elliptic PDE: B?2—44C<0 ,
parabolic PDE: B?—-4A4C=0, (2.2)
hyperbolic PDE: B2 —-4A4C>0 .

It is apparent that the classification depends only on the highest-order derivatives in
each independent variable.

For two-dimensional steady compressible potential flow about a slender body
the governing equation, similar to (11.109), is

¢ 3¢
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Applying the criteria (2.2) indicates that (2.3) is elliptic for subsonic flow M,<1)
and hyperbolic for supersonic flow (M > 1).

Ifthe coefficients, A4 to G in (2.1), are functions of x, ¥V, 4, 0u/dx or du/dy, (2.2) can
still be used if A, B and C are given a local interpretation. This implies that the
classification of the governing equations can change in different parts of the
computational domain.

The governing equation for steady, compressible, potential flow, (11.103), can be
written in two-dimensional natural coordinates as

2029 0% _

(1-M 752 +6n2 =0, (24)
where s and n are parallel and perpendicular to the local streamline direction,and M
is the local Mach number. Applying conditions (2.2) on a local basis indicates that
(2.4) is elliptic, parabolic or hyperbolic as M<1, M=1 or M>1. A typical
distribution of local Mach number, M, for the flow about an aerofoil or turbine
blade, is shown in Fig. 11.15. The feature that the governing equation can change its
type in differerit parts of the computational domain is one of the major complicating
factors-in computing transonic flow (Sect. 14.3).

The introduction of simpler flow categories (Sect. 11.2.6) may introduce a change
in the equation type. The governing equations for two-dimensional steady,
incompressible viscous flow, (11.82-84) without the du/dt and dv/dt terms, are
elliptic. However, introduction of the boundary layer approximation produces a
parabolic system of PDEs, that is (11.60 and 61).

For equations that can be cast in the form of (2.1) the classification of the PDE
can be determined by inspection, using (2.2). When this is not possible, e.g. systems
of PDE;s, it is usually necessary to examine the characteristics (Sect. 2.1.3) to
determine the correct classification.

The different categories of PDEs can be associated, broadly, with different types
of flow problems. Generally time-dependent problems lead to either parabolic or
hyperbolic PDEs. Parabolic PDEs govern flows containing dissipative mechanisms,
e.g. significant viscous stresses or thermal conduction. In this case the solution will
be smooth and gradients will reduce for increasing time if the boundary conditions
are not time-dependent. If there are no dissipative mechanisms present, the solution
will remain of constant amplitude if the PDE is linear and may even grow if the PDE
is nonlinear. This solution is typical of flows governed by hyperbolic PDEs. Elliptic
PDEs usually govern steady-state or equilibrium problems. However, some steady-
state flows lead to parabolic PDEs (steady boundary layer flow) and to hyperbolic
PDE:s (steady inviscid supersonic flow).

2.1.1 Nature of a Well-Posed Problem

Before proceeding further with the formal classification of partial differential
equations it is worthwhile embedding the problem formulation and algorithm
construction in the framework of a well-posed problem. The governing equations
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and auxiliary (initial and boundary) conditions are well-posed mathematically if the
following three conditions are met:

i) the solution exists,
ii) the solution is unique,
iii) the solution depends continuously on the auxiliary data.

The question of existence does not usually create any difficulty. An exception
occurs in introducing exact solutions of Laplace’s equation (Sect. 11.3) where the
solution may not exist at isolated points. Thus it does not exist at the location of the
source, r=r, in (11.53). In practice this problem is often avoided by placing the
source outside the computational domain, e.g. inside the body in Fig. 11.7.

The usual cause of non-uniqueness is a failure to properly match the auxiliary
conditions to the type of governing PDE. For the potential equation governing
inviscid, irrotational flows, and for the boundary layer equations, the appropriate
initial and boundary conditions are well established. For the Navier-Stokes
equations the proper boundary conditions at a solid surface are well known but
there is some flexibility in making the correct choice for farfield boundary
conditions. In general an underprescription of boundary conditions leads to non-
uniqueness and an overprescription to unphysical solutions adjacent to the
boundary in question. _

There are some flow problems for which multiple solutions may be expected on
physical grounds. These problems would fail the above criteria of mathematical
well-posedness. This situation often arises for flows undergoing transition from
laminar to turbulent motion. However, the broad understanding of fluid dynamics
will usually identify such classes of flows for which the computation may be
complicated by concern about the well-posedness of the mathematical formulation.

The third criterion above requires that a small change in the initial or boundary
conditions should cause only a small change in the solution. The auxiliary
conditions are often introduced approximately in a typical computational
algorithm. Consequently if the third condition is not met the errors in the auxiliary
data will propagate into the interior causing the solution to grow rapidly,
particularly for hyperbolic PDEs.

The above criteria are usually attributed to Hadamard (Garabedian 1964,
p- 109). In addition we could take a simple parallel and require that for a well-posed

computation:

i) the computational solution exists,
ii) the computational solution is unique,
iii) the computational solution depends continuously on the approximate auxiliary
data.

The process of obtaining the computational solution can be represented
schematically as in Fig.2.1. Here the specified data are the approximate
implementation of the initial and boundary conditions. If boundary conditions are
placed on derivatives of u an error will be introduced in approximating the
boundary conditions. The computational algorithm is typically constructed from




