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PREFACE

This book consists of the notes for a course I gave at the
T.I.F.R. Centre in Bangalore from September 20 to November 20, 1981.
The purpose of the course was to introduce the students in fhe
Programme in Applications of Mathematics to the applications of Fourier
analysis - by which I mean the study of convolution operators as well
as the Fourier transform itself - to partial differential equations.
Faced with the problem of covering a reasonably broad spectrum of
material in such a short time, I had to be selective in the choice of
topics. I could not develop any one subject in a really thorough manner;
rather, my aim was to present the essential features of some techniques
that are well worth knowing and to derive a few interesting results which
are illustrative of these techniques. This does not mean that I have
dealt only with general machinery; indeed, the emphasis in Chapter 2
is on very concrete calculations with distributions and Fourier transforms
- because the methods of performing such calculations are also well

worth knowing.

If these notes suffer from the defect of incompleteness, they
possess the corresponding virtue of brevity. They may therefore be of
value to the reader who.wishes to be introduced to some useful ideas
without having to plough through a systematic treatise. More detailed
accounts of the subjects discussed here can be found in the books of

Folland [1], Stein[2], Taylor [3], and Tréves [4].

No specific knowledge of partial differential equations or
Fourier Analysis is presupposed in these notes, although some prior

acquaintance with the former is desirable. The main prerequisite is a



ii

familiarity with the subjects usually gathered under the rubric."real
analysis" : measure and integration, and the elements of point set
topology and functional analysis. In addition, the reader is expected
to be acquainted with the basic facts about distributions as presented,

for example, in Rudin [7].

I wish to express my gratitude to Professor K.G. Ramanathan
for inviting me to Bangalore, and to Professor S. Raghavan and the
staff of the T.I.F.R.’Centre for making my visit there a most enjoyable
one. I also wish to thank Mr S. Thangavelu and Mr K.T. Joseph for their

painstaking job of writing up the notes.
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CHAPTER 1

PRELI MINARIES

IN THIS CHAPTER, we will study some basic results about

convolutions and the Fourier transform.

§1. GENERAL THEOREMS ABOUT CONVOLUTIONS

We will begin with a theorem about integral operators.

THEOREM 1.1 Iet K be a measurable function on Rn % Rn such

that, for some ¢ > 0,

fIR(x,y) |dy < ¢, [|K(x,y)|dx < c, for every x, y in R".

If 1 <p<o and f ¢ Lp(lin ), then the function Tf, defined by

Tf(x) = I K(x,y) f(y)dy for almost every x in R" ’

belongs to Lp(Rn') and further,
Tf £ .
Izl <cliell,

PROOF If p = » , the hypothesis [|K(x,y)|dx < ¢ is superfluous
and the conclusion of the theorem is obvious. If p < o, let g

denote the conjugate exponent. Then, by Holder 's inequality,

1
ITex) | < (R xoy) [ay}YT {f k(x| |£(9) |P ay}/P

In

1 1
/e x| | £ |® ay} P,
From this we have,

[IT£e0) [P ax < P2 [f|k(x,y) |1 £(9) |P ay ax

IA

cl+p/q“f(y) |Pax = 1 HP/e || £ Hg



Therefore ||Tf|]p < ||f||p .

Next, we define the convolution of two locally integrable

functions.

DEFINITION 1.2 Let £ and g be two locally integrable functions.

The convolution of £ and g, denoted by f % g, is defined by

(£%9) (x) = | £(x-y)g(y)dy = | £(y)g(x-y)dy = (g«f) (x) ,
provided that the integrals in question exist.

(The two integrals are equal by the change of variable
Yy x-y.)

The basic theorem on convolutions is the following theorem,

called Young's inequality.

. 1
THEOREM 1.3 (Young's Inequality) Let f e L (R') and g e IP(R"),

for 1 < p <o . Then f*geLp(Rn) and ©

e =all, <lall el -
PROOF Take K(x,y) = £(x - y) in Theorem 1l.1l. Then K(x,y)

satisfies all the conditions of Theorem 1.1 and the conclusion

follows immediately.

The next theorem underlies one of the most important uses of
convolution. Before coming to the theorem, let us prove the following

LEMA 1.4 For a function f defined on R" and x in Rn,

we define a function £ by fx(y) = f(y-x). If f e i r1<p<om,

then 1lim |[£° - £]_ = o.
x>0 P



PROOF If g 1is a compactly supported continuous function, then
g is uniformly continuous, and so gx converges to g uniformly

as x tends to O.

Further, for ]x| <1, gx and g are supported in a common
compact set. Therefore, 1lim ||g* - g||_ =0. Given fe P, we
x>0 P
can find a function g which is continuous and compactly supported

such that [|£-g|| < €/3 for > 0. But then l|g* - £* llp< /3

also holds. Therefore

X X x X
- ¢ £ - + g% + |lg-
I - el <l - gl +lis™all, + llo-e ]
< 2¢/3+|g" -all
P
since 1lim ||g®-g||_ = 0, we can choose x close to 0 so that
x>0 P

|| g*- gllp ‘< e/3. Then |[f*-£|/< ¢ and this proves the lemma since

€. is arbitrary.
REMARK 1.5 The above lemma is false when p = . 1Indeed, "X o £
in L” " means precisely that £ is uniformly continuous.

Let us now make two important observations about convolutions

which we shall use without comment later on.
i) Supp(f x g) < Supp £ + Supp g , where
A+B = {x+y : x € A, y € B}.

ii) If £ is of class Ck and Baf(|a| < k) and g satisfy
appropriate conditions so that differentiation under the integral sign

is justified, then f %x g 1is of class Ck and a“(f * g) = (a“f) * g.



THEOREM 1.6 t ge L' (R™ and [g(x)ax = a. Let

ge(x) = e-nq(x/e) for € > 0. Then, we have the following:

i) If f e Lp(lin), P < o, f*ge converges to af

P as € tends to 0.

ii) If f 1is bounded and continuous, then f*g£ converges

to af uniformly on compact sets as , € tends to 0.

PROOF By the change of variable x + ex, we see that

fgs(x)dx = a for all € > 0. Now

(Fxg ) (x) - af(x) = [£(x-y)g_(y)dy - !f(x)ge(y)dy

Jlex-y-£(x)] g_(y)dy

JlE(x-ey) - £(x)] g(y)dy

(£ (x) - £(x)] g(y)dy.

If" £ € P and P < », we apply Minkowski's inequality for integrals

to obtain

| s, = atll, < [I1£Y - £ ] lotw lay.

The function y -+ |[£5¥ - fHp is bounded by 2||f||p and tends to
0 as € tends to 0 for each y, by Iemma 1l.4. Therefore, we can
apply Lebesgue Dominated Convergence theorem to get the desired
result.
On the other hand, suppose f 1is bounded and continuous.
Let K be any compact subset of R". Given § > 0, choose a compact

set ' G Rn such that



Let us now consider the Fourier transform in the Schwartz

class S = S(R").

PROPOSITION 1.12 For f € S, we have the following :
. A  ®© _n Br _ A B
i) feC (R ) and 3"f = g where g(x) = (-2mix)" £(x).

£ B.. 2 » (B 2
ii) (37fF) (&) (2mig) "~ £(E).
PROOF i) Differentiation under the integral sign proves this.

ii) For this,we use integration by parts.

@B " @) = [ e 2™ EaBg) (xyax
= (-1 8l [ 3Pre™ 2% E1e (x)ax
= 1Bl (Conig)B [ & 2MXE £y ax
= (2nip)® ).
COROLIARY 1.13 If £¢S, then feS also.

PROOF For multi-indices o and B , using Proposition 1.12, we

have

288 () = e%((-2mixn e (@)

(2ri) "1 (3% ((-2mix) Bex0) " ()]

(-1) 1Bl 2y [BI=1al (0 (Be () ) * ()

gince £ & S,3%xPf(x)) ¢ ¥ and hence (% xPEx)))” er™ Thus

~
g“(a f) is bounded. Since a and R are arbitrary, this proves

that f & S.

COROLLARY 1.14 (RIEMANN-IEBESGUE IEMMA) If fe Ll , then E

is continuous and vanishes at «.




PROOF Let V = {x € Q: d4(x,K) 5-%6 } where § = d(K, lf‘\.Q).
) 1
Choose a ¢° € Co such that Supp ¢°¢: B(O, 26) and

I¢°(x)dx = 1. Define
o) = Jo_(x-y)ay = (¢ * X,) (x).
v
Then ¢(x) is a function with the required properties.

§2. THE FOURIER TRANSFORM

In this section, we will give a rapid introduction to the

theory of the Fourier transform.

For a function f ¢ L}(lf'), the Fourier transform of the

function £, denoted by E, is defined by
@) = [ 2™ XEenyax, £ e R
REMARK 1.9 Our definition of f differs from some others in the

placement of the factor of 27.

BASIC PROPERTIES OF THE FOURIER TRANSFORM

110 por ger, [, < Nl -
The proof of this is trivial.

(1.11) For £, g e L', (£x0)"(E) = E(E)G(E).
Indeed,
f &2 *Ee(y) g(x-yray ax

([ e 2B oy @ 2MYEg ) guax

_ !e-Zﬂi(x-y)’E

(£xg)” (E)

g(x-y) dx If(y) e-2n1y'€dy

fEg().



Let us now consider the Fourier transform in the Schwartz

class S = S(rR").

PROPOSITION 1.12 For f € S, we have the following :
~ ~
i) fec™®) and 2P = § where g(x) = (-2mix)® £(x).

£ B B TR B
ii) (37f) () = (2miE)" £(E).
PROOF i) Differentiation under the integral sign proves this.

ii) For this,we use integration by parts.

@B ") = [ e E(3Bg) (x)ax
= (-1 |8l f 3Bre ™22 Ee () ax
- (1) |Bl" 2y B § & 2MRE g nyan
= 2np® f@).
COROLIARY 1.13 If feS, then feS also.

PROOF For multi-indices o and B , using Proposition 1.12, we

have

£2aPH () = £*(-2min e @)

(2ri) "1 (3% (- 2min) Bex)) ()]

-1) 1Bl 2ni) [BI=1al (30 (B (x)))* )

since £ e 5,3%xPe(x)) ¢ 1 and hence (3%xPr(x)))” e1™. Thus

~
g“(an) is bounded. Since o and R are arbitrary, this proves

that 2 e S.

COROLIARY 1.14 (RIEMANN-IEBESGUE LEMMA) I £ Ll » then E

is continuous and vanishes at .




PROOF By Corollary 1.13,this is true for £ € S. Since S is

dense in L' and || lo < Il £ll,+ the same is true for all f e .

Let us now compute the Fourier transform of the

Gaussian.

2
THEOREM 1.15 Let f(x) = e ma |x| , Re a > 0. Then,

P - _-1 2
$) = a ™22 mlel®,
: A -2mix-§ _-am|x|?
PROOF £() ={e e ax
2 2T -opixsEs -a x3
i.e. fe) = nm [ & “T B3 &7OTXY gy .
J=1 -

Thus it suffices to consider the case n = 1. Further, we can take
. ’ -1/2
a=l by making the change of variable x + a X

Thus we are assuming f(x) = e-TTx , X € R. Observe that

£'(x) + 27x £(x) = 0. Taking the Fourier transform, we obtain

2mig £(E) + i £'(5) = 0.
Hence

£UE)/E(E) = -2mE

2
which, on integration, gives f({) = c e e , ¢ being a constant.

The constant ¢ is given by

(o]

c = £(0) = [e&™ ax-=1.
-

R g2
Therefore £f(§) = e 3 , which completes the proof.

We now derive the Fourier inversion formula for the Schwartz

class S.



let us define £'(£) = | 2" ¥ Eg(x)ax = F(-r).

THEOREM 1.16 (Fourier Inversion Theorem) For f ¢ S, (£) = f.

~

PROOF First, observe that for £, g ¢ Ll, I £ 3 = [ £ 1§

In fact,

[ Fgmax = {f e 2™MYX £(v)g(x)dy ax

[ [f e ®™¥'X g(xyax] £(y)ay

[ 3t £(yay.

Given € >0 and x in l{‘; take the function ¢ defined by
2mix-g - me?|g|2 .
o(E) = e2MiX"E - me lE]
Now
~ -2riy-£ 2mix-E -me?|g|?
¢(y)=!e‘"yge E‘"elgldg

- [ eT2milyx)-E et [E] %y

=2
R e

mlx|?

If we take g(x) and define g_(x) = e " g(x/e), then

8y = g_(x-y).

Therefore

f 2MXE 2 p) e—n€2|£|2d€

[ @) ¢®rag

[ £ $(yray

f£w ge(x-b)dy

(£ *‘ge) (x)



10

But as € tends to 0, (f = ge) converges to f, by Theorem 1.6

and clearly
. _ 2 2 S T
[ 2MXE 2 M IEL® 4p [ 2(pe2Ti* By |
ALY
Therefore (f) = f.

COROLILARY 1.17 The Fourier transform is an isomorphism of S

onto S .

Next, we prove the Plancherel Theorem.

" THEOREM 1.18 The Fourier transform uniquely extends to a unitary

map of Lz(lfl) onto itself.

PROOF For f €S, define E(x) = f(-x). Then it is easily

checked that ? = E, so that

2
NEll, = flew)|2ax

"

[ £(x) E(-x)dax

(£ % £) (0)

f(£« B (@®rat

[£&) ?(g)ag

-~ ~ A~ 2
f£@) f®ag = [[£]], -

Therefore, the Fourier transform extends continuously to an isometry

of L2 . It is a unitary transformation, since its image S is dense

" 2
in L s
Let us observe how the Fourier transform interacts with

translations, rotations and dilations.



