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PREFACE

The dynamics of inelastic continua is nowadays a domain of intense study. Society, aiming at
its own welfare and safety but aware of limited natural resources, requires reliable answers
regarding the mechanical behaviour of solids and the performance of structures under transient
agencies. Impacts, blasts, collisions, thermal shocks, and irradiations constitute current hazards
of modern technology. Assessments of damage and failure due to the propagation of stress
waves, evaluations of permanent deformation and energy absorption under impact, methods of
estimation of pressure transmitted through protective structures, calculations of structural
reliability under transient random charges, are of importance for the development of technology
and for a safe utilization of its products.

The last decade is associated with significant advances in the mechanical sciences, in
particular as regards the inelastic behaviour of materials and structures. Mathematical models of
complex material response were formulated within the framework of non-linear continuum
mechanics and justified in often sophisticated experiments. Mechanisms of inelastic deformation
were explored to a large extent and couplings between mechanical and other fields were studied.
Methods of solving boundary value problems for the differential equations governing the
dynamics of inelastic solids were developed and various problems of a direct technological
interest regarding structural strength and the propagation of waves in elastic—plastic and rate
sensitive materials were solved. Advanced specialized monographs are thus needed to facilitate
an access to the accumulated knowledge and to its utilization in engineering service to society.

The present book largely contributes towards meeting such a demand in the domain of
continuum dynamics. Dr. Nowacki has succeeded in producing both an original and a
comprehensive presentation of principles, methods, and solutions regarding the propagation of
waves in elastic—plastic and viscoplastic solids.

This monograph is comprehensive since it exposes wave propagation problems for the
considered types of material response starting with discussions of constitutive relations, justifies
the hypotheses introduced in specialized theories and the simplifications made in the analysis of
particular problems, presents both analytical and numerical methods of solving problems, and
gives a large number of solutions to specific problems of wave propagation in inelastic solids.

The book is original both in its outline and in its contents. It includes a number of
contributions Dr. Nowacki has made to the study of wave propagation in elastic—plastic and
viscoplastic continua. There is a competent exposition of the mathematical questions relating to
hyperbolic differential equations, a presentation of analytical and numerical techniques resulting
in effective solutions of problems concerning plane, cylindrical and spherical stress waves and
thermal stress waves, and discussions of two-dimensional waves, the whole being supplemented
by solved problems. All this makes the book useful both in study and in design.

ix



X PREFACE

By its contents and its competent and lucid presentation of problems of inelastic waves the
book constitutes a significant and useful contribution to the domain of continuum dynamics.
It has no equivalent counterpart in the existing literature and it will doubtless be appreciated by
both specialists and students because of its originality and pertinence.

Warsaw, 13 April, 1976 A. SAWCZUK



INTRODUCTION

This book is devoted to wave problems in the theory of plasticity. Such problems arise in cases
in which intensive dynamic loads acting on the elements of a structure are big enough to produce
plastic deformation of the elements. To date a considerable number of contributions and
monographs have been published in this field. The first papers referring to these problems
appeared in the forties and the theory rapidly developed in the sixties. Many problems,
particularly the one-dimensional ones, have been investigated fully. A few monographs exist
presenting the theory of impact in continuous and discrete systems in a general way. Here we
should quote, first of all, the monograph by Kolsky [71], published in 1953, next the book by
Goldsmith [46] which appeared in 1960, and those by Rakhmatulin and Demianov [125] and
Cristescu [34], published in 1961 and 1967 respectively. In these books the reader can find the
general theory of impact in continuous plastic bodies. Since the publication of these books a
number of problems have been solved which are significant from the standpoint of engineering
practice. Numerous papers on the dynamics of inelastic structures have appeared. In connection
with the rapid development of computational techniques a great number of methods have been
devised for the numerical integration of quasi-linear and semi-linear partial differential equations.
These investigations have been accompanied by the development of the pertinent analytical
methods of solving initial and boundary value problems for inelastic bodies. They mainly refer
to the problems of stress wave propagation in the cases of complicated stress states, the waves
generated by multi-parameter loading, three-dimensional waves, and, finally, to thermal stress
waves.

This book is confined to those wave problems which are such that they can be described by
a system of hyperbolic partial differential equations of the first order, which are quasi-linear or
semi-linear. A survey of the literature is given in the field of stress wave propagation in elastic/
viscoplastic media and in particular the papers of Polish authors are discussed.

The book is arranged in the following way. The first chapter has been devoted to the
fundamental equations of the dynamics of inelastic media. The dynamical properties of
materials (metals and soils) are discussed offering an account of the most representative theories
of plasticity and viscoplasticity. Chapter II considers the basic definitions of discontinuity
surfaces and the conditions which have to be satisfied across these surfaces. Simultaneously,
certain mathematical fundamentals have been given, referring to systems of differential
equations, quasi-linear and semi-linear, of the first order. Also initial and boundary value
problems for hyperbolic equations have been formulated. The remaining chapters have been
devoted to methods of solving stress wave propagation problems, namely, one-dimensional
plane waves, spherical and cylindrical waves, longitudinal —transverse waves, waves in beams and
plates, and plane two-dimensional stress waves. Wave propagation problems for elastic—plastic

Xi



Xii INTRODUCTION

and elastic/viscoplastic media have been treated in detail, as well as the most important
problem of shock waves in metals and soils. The last chapter deals with thermal wave
propagation problems, relating to waves generated by thermal shocks applied to the boundary
of the media under consideration.

Wave propagation problems in strings and membranes are not discussed in this book. The
reader is referred for an exhaustive treatment to the monographs by Rakhmatulin and
Demianov [125] and by Cristescu [34]. Since the time these books appeared the subject has
not been changed except for some insignificant modifications. The theory of impact in inelastic
solids, in which wave phenomena are not taken into account, have also been neglected in this
book. These problems have been discussed in a number of monographs, for example in [118]
(chapter V) and in [47] (chapter XV, where the theory of impact in discrete mechanical
systems is discussed).

I'am much indebted and thankful to my colleague Dr. Bogdan Raniecki from the
Institute of Fundamental Technical Research of the Polish Academy of Sciences for his
valuable suggestions and numerous discussions during the preparation of the book.
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PUBLISHER’S NOTE

In order to make this volume available as economically and as rapidly as possible much of the
mathematics has been reproduced directly from the original Polish edition. Due to technical
problems, however, it was not possible to match the typography of the new updated material
with the original, and certain characters within the new text matter will appear different from
those in the reproduced matter. The variations comprise

v which appears as v in the original,
€ which appears as ¢ in the original,

g which appears as g in the original;

no distinction is intended and it is hoped that they will in no way distract the reader.



CHAPTER I

FUNDAMENTAL EQUATIONS OF THE DYNAMICS OF
INELASTIC MEDIA

1. Dynamical properties of materials

The dynamical properties of materials will be briefly presented based on the results of
experiments. The reader can find more details of the experiments in the monographs by
Rakhmatulin and Demianov [125], Kolsky [71], Cristescu [34], and Perzyna [114] and [118].

The investigation of the behaviour of materials under dynamic conditions has taken place
in several different directions. The determination of the dynamic characteristic (constitutive
relationship) constitutes the primary direction of the investigations. Also, much research has
been done in order to find the plastic strain distribution along the specimens tested and to
investigate the influence of transverse motion during the propagation of longitudinal waves in a
test piece which produces the effect of wave dispersion. The object of numerous experimental
investigations has been to determine the influence of temperature and that of radiation on the
behaviour of metals under dynamic conditions.

In the case of static processes, the mechanical properties of material are described by the
stress—strain diagram. In the case of the dynamic loadings, however, the stress—strain relation is
influenced by the strain rate. The influence of a number of other phenomena is also observed,
e.g. temperature, radiation, etc.

The fundamental properties of metals and soils will be presented in this section.

1.1. DYNAMICAL PROPERTIES OF METALS

The experimental investigations of Clark and Duwez [25], Manjoine [84], Hauser, Simmons
and Dorn [51], Campbell and Ferguson [22], Marsh and Campbell [88], Lindholm [76]—[78],
and of many other authors reveal that much higher stress is necessary to reach the yield limit in
an impact loading compared with that for a slow one. In the case of a number of practically
important materials (e.g. high-carbon steels) a relationship explicitly independent of the strain
rate [125] o = o(€), obtained during dynamic loading of a specimen, can be used to characterize
the dynamic behaviour of the materials. This relationship essentially differs from the static
characteristic. The dynamic and static characteristics for a specimen made of mild steel are
presented in Fig. 1. Curve 1 denotes the static case, while 2 indicates the dynamic one. Curve 2
has been drawn using the method due to Rakhmatulin [125], based on the measurement of
plastic deformation of the initial cross-section of the specimen under the effect of the impact
as a function of the impact speed. The yield limit of the material increases for dynamic loading
of the specimen. The character of the curve is determined by the type of material. It has been

1



2 STRESS WAVES IN NON-ELASTIC SOLIDS

found in many experimental investigations that those metals with a distinct yield limit are
particularly sensitive to strain rate. A good example of this behaviour of exhibiting high
sensitivity to strain rate is that of mild steel and pure iron. The influence of strain rate on the
change of yield limit for mild steel was the subject of investigations in [25], [84], [76]—[78],
[88], [24], and in other papers. For example, Clark and Duwez [25] found that for mild steel
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(0.22% carbon) the yield limit increases with the increase of strain rate (Fig. 2) from about
2.71 X 10® Pa (the static yield limit) to a value of about 5.76 X 108 Pa for a strain rate of

€ ~ 200 s™ . The yield limit increases up to the moment when it joins the curve representing the
change of the conventional strength limit (dashed line in Fig. 2). The conventional strength
limit increases in the range of strain rates from 0 to &~ 200s™!.

The results of numerous experiments have shown that the yield limit for mild steel in
dynamic loading situations can reach a value which is 2—3 times greater than that for static
loading processes. It has also been noted that in a dynamic loading process the strain-hardening
effect decreases in comparison with that for static loading.

Most of the investigations connected with the determination of dynamic material
characteristics were performed under conditions of uniaxial tension or compression or for pure
shear. Only a few experiments have been performed so far investigating the material
characteristics in complex loading conditions. The investigations of Lindholm [76] —[78]
belong to the pioneer ones in this field. The results of these experiments refer to aluminium
and steel specimens under uniaxial tension and shear. The second stress tensor invariant against
the second strain tensor invariant is shown in Fig. 3 for various strain rates [76] —[78]. The
experiments were performed for a range of strain rates from 10® s! to 4 X 1073 s7L. It is clear
from the diagram that for higher strain rates the greater values of the stress intensity /7,
correspond to a definite value of the strain intensity /7, = const. Lindholm [77] has performed
identical experiments for steel specimens, obtaining similar results.

There already exists an extensive literature concerning the influence of strain rate as well as
of temperature on the stress—strain relations. Each of these effects is considered separately. It
has been found experimentally that at low temperatures the lower yield limit of metals does
not depend on the strain rate, while at elevated temperatures even very small changes of strain
rate cause a significant decrease or increase in the yield limit [22], [24].
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The effect of radiation on the plastic properties of metals has also been investigated. As a
rule the radiation of specimens leads to an increase of both yield limit and strength limit. The
influence of strain rate is different for radiated metal than for unradiated. A radiated metal
is considerably more sensitive to a change of strain rate [119].

1.2. DYNAMICAL PROPERTIES OF SOILS

In the case of quasi-static loading, soil settlement is produced by fluid seeping into and filling
the cavities in the soil skeleton. Then the entire loading is transmitted by the soil skeleton and
the soil deformation is entirely connected with the displacement of the soil skeleton grains. In
the case of dynamic loading the soil behaves like a more homogeneous medium; the pressure in
the fluid and air filling the soil skeleton is close to the pressure acting on the soil, particularly
when the soil is very wet.

Compressibility is an important property of soils. For small loads of the order 104—5 X 10*
Pa, the soil can be treated as an incompressible medium. The compressibility of soils differs
significantly from that of metals, water, air, etc. When the stresses compressing a specimen
increase the density of soil can increase significantly and the associated dilatational strain is
irreversible due to the displacements of the soii grains and their crushing. During unloading this
irreversible character of the processes mentioned is demonstrated by very slight changes of the
density. It is noteworthy that in the case of dynamic loading the displacement of the soil grains
due to their inertia lags behind the increase of pressure. This can be observed at the instant when
the pressure attains its maximum value when the loading begins to develop. Though the
pressure decreases a diminishing of the specimen volume still takes place during the first stage of
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unloading. This property for sand of different initial water content is shown in Fig. 4. The
irreversibility of the dilatational compression decreases with the increase of water content
and is caused by the elasticity of water filling the pores of the skeleton.

Initial
humidity
I1=6%
Io=3%
I = 0%
&
1 D.O
[«8
|
50
ex10%
Fig. 4

Recent investigations have revealed that soil possesses rheological properties and is
sensitive to change in the displacement rate. This sensitivity varies with the kind of soil. The
papers of Grigorian [48], of Rakhmatulin, Sagomonian, and Alekseyev [126], and of
other authors are devoted to the dynamic characteristics of soils. The influence of displacement-
rate effects on soil behaviour is discussed in [126].

2. Basic theories of plasticity

The physical relationships of the basic theories of plasticity will now be presented including
the strain theory of plasticity, the bilinear theory, and the theory of plastic flow. The rate effect
on the stress—strain relations is not taken into account in these theories; nevertheless, they are
frequently applied to the dynamic problems of plasticity due to the fairly good approximations
that the theories provide for a definite class of cases.

2.1. STRAIN THEORY OF PLASTICITY

The constitutive equations of the theory of small elastic-plastic strains (equations of
Nadai—Hencky—Iliushin) constitute a generalization of the physical relationships of the theory
of elasticity and can be treated as a certain kind of extrapolation beyond the elastic state. The
following three postulates are assumed in this theory, the first two being exactly the postulates
of the theory of elasticity, namely:

(1) The principal directions of the stress tensor coincide with the principal directions of the

strain tensor.
(2) Mean normal stress is proportional to the mean strain; the proportionality coefficient is

the same in both elastic and plastic states.
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(3) The stress intensity is a function of only the strain intensity, and should be determined
for each material experimentally, i.e.

2.1) o; =2m(g;)e;,

where m(g;) is a function of strain intensity only, and o; and €; denote the stress and strain
intensities, respectively, and are defined by the formulae

5 1/2 3 1/2
o; = 7s,.js,‘,- 5 & = —2—'eijeij 2

The system of equations for the strain theory takes the form [151] :

2.2) Sij=¢@y,  or=2m(e)e, om=3Key,

where s;; and e;; are the normalized deviatoric stress and strain tensors K = —3— (2u+3)) and A

and p denote the Lamé constants. After some algebra we obtain from {2.2) the constitutive
equations

1
2.3) 01, =2m(e;) &+ 3 [3K—2m (31')] &k 0y -

Function m(e;) is determined on the basis of experimental data from relation (2.1). The
relationship o; = f(e;) does not differ much from the relationship o = fle) (Fig. 5) obtained for a
unijaxial stress state. Function f{€;) can be obtained from function f(€) by a change of scale of
the coordinates (Fig. 5). The character of the diagram remains the same. In a uniaxial state of
stress we obtain 0; = 0, €; = (1 + »)e, where v’ denotes the coefficient of transverse shrinkage.

The states described by (2.3) correspond to a loading process, i.e. to a process in which the
stress intensity is an increasing function of time, i.e. for de;/dt > 0. If o; after reaching a certain
value, e.g. 0; = 0; (Fig. 5) at a point B, starts decreasing then unloading occurs. Then
de;/dt < 0 and the unloading follows the straight line BC, parallel to Hooke’s straight line OA.
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