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Preface

The name of the gathering archived in these pro-
ceedings, the “First International Conference on In-
telligent Systems for Molecular Biology,” was care-
fully worded and bears some exegesis. To begin with,
there is an obvious element of optimism in the use of
the word “First.” The organizers were confident that
this would indeed be the inauguration of a continu-
ing series of such meetings, based upon the growing
level of participation in a number of predecessor col-
loquia of various types (including AAAI Symposia
and Workshops). This optimism was fully justified
by the response. Nearly 70 papers were received from
around the world, as well as hundreds of inquiries. In
the judgment of the editors, the submissions were of
high quality for a new conference in a field not yet
well established. Funding agencies were also enthu-
siastic, in part because of groundwork laid in a pre-
liminary meeting to promote the development of in-
frastructure in this new sub-field of computational
biology (jointly sponsored by the National Science
Foundation, and the National Library of Medicine
and attended by many on the program committee).
The success of this particular aspect of that effort is
evidenced by the planning already underway for the
second conference in the series.

The word “international” in the title reflects the
observation that outstanding work in this field takes
place in many countries around the world. Not only
was the program committee drawn from Europe,
North America, and Asia, but a gratifying fraction of
the submissions were as well. It should also be noted
that the conference is cross-cultural in a scientific
sense as well. The organizers can attest that the re-
wards of such interdisciplinary work are balanced by
difficulties that sometimes amount to outright cul-
ture clashes, not least of which are the differing atti-
tudes toward conferences and conference proceed-
ings. It is hoped that, as the conference series is es-
tablished, these proceedings will be an attractive and
respected venue for publication of original biological
results as well as pragmatically-inclined applications
of computational research. This inaugural volume
would seem to bode well.

The words “Intelligent Systems” are the most
problematic in the title. It was neither contrariness
nor fear of an Al Winter that inspired this terminol-
ogy; the organizers are all unabashed artificial intelli-

gencers, and feel as well that this field represents a
natural constituency for the technology push of Al to
balance the applications pull of biology. Rather, the
words “intelligent systems” were intended in part to
promote inclusiveness, for example towards appro-
priate work in robotics, statistics, and databases —
computational fields associated with Al, but not sub-
sumed by it. In addition, the more general terminol-
ogy was meant to let more emphasis fall on biological
discovery. The final connective of the title, in fact,
wavered for some time between “and” and “for,” be-
fore the latter was chosen on the strength of its con-
notation of service. The choice of molecular biology
as the domain (as opposed to biology generally)
seemed a reasonable restriction, given the predomi-
nance of this arena in computational applications,
and the need to provide some focus within the
tremendous range of biological application areas.

The organizers accept any blame that may attach
to these decisions, but they must confer praise on the
program committee (listed elsewhere), which made
timely and perspicacious comments on the papers
submitted. Several other individuals deserve thanks
for significant contributions to the organization of
the conference: Laura Cuccia for secretarial support
at the University of Wisconsin; Saundra Greenberg
for secretarial support at the National Library of
Medicine; Mark Craven and David Opitz for orga-
nizing the student volunteers; and Mike Hamilton at
AAALI Press for ably publishing the proceedings.

To conclude, we would like to explicitly acknowl-
edge and thank the funding agencies that made this
conference possible: the National Library of
Medicine, for grant R13-LM05518, as well as the use
of its meeting facilities; the Department of Energy,
Office of Health and Environmental Research foi
grant DE-FG02-93ER61562; the American Associa-
tion for Artificial Intelligence; The Biomatrix Society;
and the National Institutes of Health, Division of
Computer Research and Technology. We would also
like to thank the sponsors of the infrastructure plan-
ning meeting that led to this conference: the National
Library of Medicine for grant R13-LM20003 and the
National Science Foundation for grant IRI-9123156.

—Lawrence Hunter, David Searls, & Jude Shavlik
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Abstract

We describe various methods designed to dis-
cover knowledge in the GenBank nucleic acid se-
quence database. Using a grammatical model of
gene structure, we create a parse tree of a gene
using features listed in the FEATURE TABLE.
The parse tree infers features that are not explic-
itly listed, but which follow from the listed fea-
tures. This method discovers 30% more introns
and 40% more exons when applied to a globin
gene subset of GenBank. Parse tree construc-
tion also entails resolving ambiguity and inconsis-
tency within a FEATURE TABLE. We transform
the parse tree into an augmented FEATURE TA-
BLE that represents inferred gene structure ex-
plicitly and unambiguously, thereby greatly im-
proving the utility of the FEATURE TABLE to
researchers. We then describe various analogical
reasoning techniques designed to exploit the ho-
mologous nature of genes. We build a classifica-
tion hierarchy that reflects the evolutionary rela-
tionship between genes. Descriptive grammars of
gene classes are then induced from the instance
grammars of genes. Case based reasoning tech-
niques use these abstract gene class descriptions
to predict the presence and location of regulatory
features not listed in the FEATURE TABLE. A
cross-validation test shows a success rate of 87%
on a globin gene subset of GenBank.

1 Introduction

GenBank, the primary worldwide repository for nu-
cleic acid sequence data, contains information on virtu-
ally all nucleic acid sequence that has been determined
[Burks et al., 1991]. Each GenBank entry contains a
FEATURE TABLE, a list of biologically significant
features that, taken together, constitute GenBank’s
description of the structure of the sequence. Unfortu-
nately, many GenBank entries suffer from incomplete,
noisy (ambiguous or contradictory), and erroneous list-
ings in the FEATURE TABLE. To a degree, these
types of errors are inevitable in any large and complex

database. The problem is exacerbated by the necessity
of incorporating direct submissions from investigators
into the database, without which GenBank would fall
hopelessly behind in its effort to keep pace with the
growing rate of sequence determination. However, in-
vestigators are often unfamiliar with the GenBank data
description language, and as a result, fail to clearly rep-
resent their data. Typical obfuscations include miss-
ing features (e.g. introns not listed), mislabeled fea-
tures (e.g. mRNA instead of prim_transcript or exon),
incompatible boundary specifications among multiple
features (e.g. between exon and CDS), and relegation
of significant information (e.g. gene names in multi-
gene entries) to free-text in the comment fields. For-
tunately, much of this lost information can be recov-
ered through analysis of the explicit information in the
FEATURE TABLE to infer the implicit information.
If we are to realize the full potential of GenBank, it is
imperative that we develop tools that can discover this
implicit data within GenBank.

We have developed several software tools in our lab-
oratory designed to support this pursuit, chief among
these is QGB [Overton et al., 1993}, a system for per-
forming complex queries on the information stored in
flat-file and relational database versions of GenBank.
Using a logic grammar as a model of gene structure,
QGB corrects and disambiguates the listed features,
discovers latent knowledge implicit in the FEATURE
TABLE, and produces an idealized, augmented FEA-
TURE TABLE as output. Queries in QGB, formu-
lated in an SQL-like syntax, can be directed against
the hierarchical sequence structures deduced by the
logic grammar parser as well as other information in
GenBank. A QGB query representing “return the lo-
cus ID, the definition line, and 10 bp 5’ and 20 bp 3’
to the 5’splice junction for all splice sites in all non-
mammalian genes with complete coding sequences”
would be constituted as

SELECT locus.id, definition,
5’splice_site = JUNC(-10,pt:exon,pt:intron,20)
FROM °’/databases/gbrel74/*.seq’,
TO myresults,
WHERE organism =\= mammalia AND
definition AMONG
("complete cds" OR "complete coding sequence').

Aaronson 3



One of our major long-term goals is to apply com-
putational approaches to the analysis and understand-
ing of eukaryotic gene regulation. As part of this ef-
fort, we are taking various approaches towards dis-
covering transcription elements and other regulatory
signals in uncharacterized and partially characterized
DNA sequences. Prediction of regulatory signals is
of enormous practical value to researchers who can
use this information to focus their costly and time-
consuming experimental efforts on restricted regions
of the DNA. We illustrate how our system can be
used to automate the task of pattern recognition in
the case where there are too few well-characterized
examples of the regulatory sequences to apply sta-
tistical based machine learning methods towards in-
ducing a pattern descriptor (see [Dietterich, 1990] for
an overview of the requirements for statistical ma-
chine learning methods). As previously described
[Overton & Pastor, 1991, Pastor et al., 1991], we have
turned to a variant of Case Based Reasoning (CBR)
[Kolodner, 1985, Kolodner et al., 1985], a form of rea-
soning by analogy, in this situation. One advan-
tage of CBR is that it can succeed with only a few
well-characterized examples if the uncharacterized test
cases are sufficiently similar to some members of the
example set. To do this, a CBR system makes use
of domain knowledge, i.e., the similarity of the test
case to some member of the case database, to replace
the need for an accurate general gene structure model
with an accurate local model. Methods of reasoning by
analogy work well in this domain because similar bio-
logical systems are often homologous, that is derived
from a common evolutionary ancestor, rather than be-
ing merely analogous. Furthermore, the CBR method-
ology matches the line of reasoning often used by biolo-
gists in practice: find a well-understood system similar
to the new system, hypothesize the existence of fea-
tures in the new system based on the features of the
known system, then design and perform experiments
to test for those features in the new system.

In CBR, well-characterized “cases” are organized
and indexed in a case database. On the basis of the
index, database cases are found which are similar to a
test case and then these similar cases are used as tem-
plates to reason about the properties of the test case.
The indexing scheme in our system is based on a static
classification hierarchy constructed for attributes rep-
resenting protein similarity and species similarity. The
hierarchy is equivalent to a case database and the pro-
cess of classifying a test case in the hierarchy amounts
to the step of finding the most similar cases.

The paper is organized as follows: We provide back-
ground and motivate QGB’s grammatical representa-
tion of gene structure, and describe its application to
GenBank FEATURE TABLEs in Section 2. Section 3
details the construction of a classification hierarchy
of genes that reflects the homologous relationship be-
tween similar biological systems. In Section 4, we dis-
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cuss how gene class descriptions are recursively induced
in the hierarchy from the instance grammars of genes.
Section 5 explains how one CBR technique utilizes de-
scriptive grammars and another utilizes sequence sim-
ilarity in order to predict unknown regulatory regions
in genes, and Section 6 suggests an application of CBR
for correcting existing feature descriptions, rather than
predicting new gene features. Finally, results of ap-
plying the system to the globin gene family subset of
GenBank are given in Section 7, and a discussion can
be found in Section 8.

Gene Primer

Our current work has focused on the globin gene
family, whose proteins’ function to transport oxygen,
and include the myoglobins, hemoglobins and leghe-
moglobins. Figure 1 shows an abstract view of the
structure of a canonical S-hemoglobin gene, but the
essential features of this gene are typical of the genes
of higher organisms. Substrings of a gene contain two
types of information: information specifying the se-
quence of the gene’s protein product, which is con-
tained within the exon subsequences of the primary
transcript, and information needed to regulate the
process of gene expression.

Several hundred classes of elements are known that
are part of the apparatus that controls gene expres-
sion, and more are discovered each year. These tran-
scription elements typically range in length from 4 to
20 nucleotides, a size consistent with their presumed
role as sequence specific recognition sites for binding of
regulatory proteins. Upstream (located on the 5’flank
of the primary transcript) promoter signal regions
and downstream (located on the 3’flank of the primary
transcript) terminator signal regions respectively act
to define the start and stop points of the primary tran-
script. The class of promoters includes subsequences
such as the TATA, CAAT and CACA boxes, which
are found across a wide range of genes and species, as
well as rarer subsequences that restrict gene expression
to a specific tissue in an organism. Proper expression
of a gene is critically dependent on the organization of
the promoter sequences.

2 Gene Structure as a Grammar

QGB restructures the FEATURE TABLE of each
GenBank entry into a collection of relational tuples,
which are then processed by the Sequence Structure
Parser (SSP) component of QGB. The SSP attempts
to construct a parse tree expressing the structure of
the gene described in the GenBank entry, or several
parse trees in case the GenBank entry describes a gene
cluster (see [Searls, 1993] for a full discussion of gram-
matical representation of gene structure).

In order to accommodate the peculiarities of the
“language” of this domain we developed a generaliza-
tion of the DCG formalism [Pereira & Warren, 1980]
as an implementation technique of SSPs. Standard



transcription
unit
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et
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Figure 1: Idealized view of a parse tree for a typical eukaryotic protein coding gene.

DCG rules are of the form LHS => RHS, where the
LHS (left-hand side) is a non-terminal and the REHS
(right-hand side) any combination of terminals and
non-terminals. Terminals correspond to words of the
sentence being parsed (the leaf nodes of the parse tree),
and non-terminals represent sets of phrases (sub-
sequences of sentences) as defined by the grammar.
Each interior node of a parse tree corresponds to a
non-terminal as the sequence of terminals underneath
such a node is one of the phrases of that non-terminal.
The LHS non-terminal in the toplevel grammar rule is
termed the start symbol.

In the context of nucleic acid sequences (NA) the
distinction between terminals and non-terminals is less
clear since genes can be described and investigated at
various levels of abstraction. As shown in the parse
tree of Figure 1, subsequences which may be considered
as terminals in one context may become non-terminals
in another (e.g., exons as subsequences of a primary
transcript may be considered terminals, whereas ex-
ons would be non-terminals when parsed into coding
sequences and untranslated regions).

Each feature of the FEATURE TABLE essentially
describes one node (terminal or non-terminal) of the
gene parse tree along with the DNA subsequence cov-
ered by it. These descriptions are often redundant,
incomplete and even inconsistent, and the task of the
SSP is to assemble complete parse trees expressing the
same information in a structured non-redundant con-
sistent fashion. Below is a simple example of an NA
grammar rule expressing the fact that a transcription
unit consists of a 5’ flanking region, followed by a pri-
mary transcript and a 3’ flanking region:

transcription_unit =>
5’flank, primary_transcript, 3’flank.

Since grammatical elements (termi-
nals and non-terminals) correspond to intervals of NA
(sub)sequences [Overton et al., 1989], grammar rules
can be naturally interpreted as interval relationships
where ‘=>’ means the interval on the LHS contains the
intervals on the RHS (“part-whole” relationship), and a
¢,” between intervals means that the end of the first in-
terval is the beginning of the second interval (“order of
parts” relationship). Techniques have been developed
for reasoning about temporal intervals [Allen, 1983],
and these techniques can be extended to cover NA in-
tervals. Incorporating these techniques into grammar
rule formalisms makes it possible to model other in-
terval relationships such as overlaps, starts, and ends
[Pastor et al., 1991].

Contrary to standard parsers that take as input a
list of terminals, the input to the SSP may contain
non-terminals as well. To facilitate efficient processing
the grammatical elements (features) on the input list
are ordered by their start positions, lengths and ranks
in the grammar hierarchy; for example, an exon occurs
before a CDS fragment with the same boundaries. The
square bracket notation, [], is used to remove and add
elements to the input list. When used on the RHS of
a rule, they remove grammatical elements, and when
used on the LHS they add elements. Therefore, an el-
ement can be removed, examined and replaced on the
input list as in the following example which tests if the
5’flank boundary has been reached:

5’flank, [primary_transcript(S,E,I)] =>
gap, [primary_transcript(S,E,I)].

Aaronson 5



A)
cluster(pos(<, [0,0]) ,pos(>,[1138,1138]),(
t_u(pos(<,[0,0]),pos(>,[1138,1138]),(
f_£f (pos (<, [0,0]),pos(=,[97,971),(
gap(pos(<,[0,0]),pos(=,[26,26]1), )
promoter (pos (=, [26,26]) ,pos(=,[31,31]1),0
gap(pos(=,[31,31]),pos(=,[69,691),0
promoter (pos (=, [69,69]) ,pos(=,[72,72]1),0)
gap(pos(=,[72,72]),pos(=,[97,971),0))
p_t(pos(=,[97,971) ,pos(=,[929,929]),(
exon(pos (=, [97,97]) ,pos(=,[230,230]),(
five_utr(pos(=,[97,97]) ,pos(=,[134,134]1),(
gap(pos (=, [97,97]) ,pos(=,[134,1341), )
cds (pos(=,[134,134]) ,pos (=, [230,230]1),0))
intron(pos(=, [230,230]),pos (=, [347,347]),(
gap(pos (=, [230,230]1) ,pos (=, [347,3471),0))
exon(pos (=, [347,347]) ,pos (=, [651,551]1),(
cds(pos(=, [347,347]) ,pos(=,[551,551]1),0))
intron(pos(=,[551,551]),pos(=,[691,691]),(
gap (pos(=, [651,551]) ,pos(=,[691,6911),0))
exon(pos (=, [691,691]) ,pos(=,[929,9291),(
cds(pos(=,[691,691]) ,pos (=, [820,820]),0)
three_utr(pos (=, [820,820]) ,pos(=,[929,9291),(
gap(pos (=, [820,820]) ,pos(=,[908,9081), ()
pA_sig(pos (=, [908,908]) ,pos(=,[914,9141), O
gap (pos(=,[914,914]) ,pos(=,[929,9291), ))))
t_£f (pos(=,[929,929]) ,pos(>,[1138,1138]),(
gap (pos (=, [929,929]) ,pos (>, [1138,11381),())))

FEATURES

Location/Qualifiers

CDS join(135..230,348..551,692..820)
/codon_start=1

/translation= NOT SHOWN

precursor_RNA 98..929
/note="primary transcript"
mRNA 98..230
mRNA 348..551
exon 692..929
/number=3

FEATURES Location/Qualifiers
trans_unit <1..>1138
/gene="alpha-globin"
5’flank <1..97
promoter 27..31
/sequence="ccaat"
promoter 70..72

/sequence="ata"
prim_transcript 98..929
/note="primary transcript"

exon 98..230
5°UTR 98..134
CDS join(135..230,348..551,692..820)

/codon_start=1
/translation= NOT SHOWN

intron 231..347

exon 348. .551

intron 552..691

exon 692..929
/number=3

3’UTR 821..929

pA_sig 909..914
/sequence="aataaa"

3’flank 930..>1138

Figure 2: The parse tree, the original FEATURE TABLE, and the augmented FEATURE TABLE for the HUMAGL1
a-hemoglobin gene. A) standard representation of the parse tree for HUMAGL1 generated by the SSP; B) the FEATURE
TABLE as found in GenBank; C) a representation of the parse tree for HUMAGL1 as a corrected, augmented FEATURE
TABLE. Note that the start position for each interval in the parse tree is one less than the start position in the corresponding
FEATURE TABLE entry because the SSP indexes on the space between characters rather than the character itself.

where the logic variables S and E represent the start
and end positions of the interval, and I provides con-
text information about the features.

Alternative rule applications (disjunction) can be ex-
pressed as follows:

5’flank => promoter, 5’flank.
5’flank => gap, promoter, 5’flank.

and recursion is illustrated in this example:
primary_transcript =>

exon, intron, primary_transcript.
primary_transcript => exon.

Practical grammars also need escapes to the underly-
ing implementation language. Such escapes are also
available in NA grammars to handle exceptional situ-
ations such as erroneous and missing input data.

We developed an NA grammar for the class of genes
that code eukaryotic proteins. It has been successfully
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applied to a large number of eukaryotic globin genes
such as the human a-hemoglobin gene entry (HU-
MAGL1) shown in Figure 2B. The parse tree generated
from this table is shown in Figure 2A. Note that this
parse tree includes two promoters and one polyA-signal
that were inferred by the techniques discussed below.
In addition, the SSP inferred that the label precursor
RNA should be changed to primary transcript, two fea-
tures listed as mRNA are actually exons, and two introns
were missing from the original FEATURE TABLE.
This example illustrates only a few of the problems
that complicate the development of grammars with
broad coverage. Apart from mislabeling and omis-
sion of features, the SSP has to deal with FEATURE
TABLESs describing multiple genes or alternative ver-
sions of genes (e.g., alternative splice sites, transcrip-
tion start sites, and polyA additions sites). In such
cases it is often necessary to refer to the qualifier fields



